(chore) undo changes on ishaan branch

This commit is contained in:
ishaan-jaff 2023-11-24 16:55:57 -08:00
parent 0383e32628
commit 1a4958eb14

View file

@ -1,41 +1,71 @@
# import litellm
# from litellm import ModelResponse
# from proxy_server import update_verification_token_cost
# from typing import Optional
# from fastapi import HTTPException, status
# import asyncio
import litellm
from litellm import ModelResponse
from proxy_server import llm_model_list
from typing import Optional
# def track_cost_callback(
# kwargs, # kwargs to completion
# completion_response: ModelResponse, # response from completion
# start_time = None,
# end_time = None, # start/end time for completion
# ):
# try:
# # init logging config
# api_key = kwargs["litellm_params"]["metadata"]["api_key"]
# # check if it has collected an entire stream response
# if "complete_streaming_response" in kwargs:
# # for tracking streaming cost we pass the "messages" and the output_text to litellm.completion_cost
# completion_response=kwargs["complete_streaming_response"]
# input_text = kwargs["messages"]
# output_text = completion_response["choices"][0]["message"]["content"]
# response_cost = litellm.completion_cost(
# model = kwargs["model"],
# messages = input_text,
# completion=output_text
# )
# print(f"LiteLLM Proxy: streaming response_cost: {response_cost} for api_key: {api_key}")
# # for non streaming responses
# else:
# # we pass the completion_response obj
# if kwargs["stream"] != True:
# response_cost = litellm.completion_cost(completion_response=completion_response)
# print(f"\n LiteLLM Proxy: regular response_cost: {response_cost} for api_key: {api_key}")
# ########### write costs to DB api_key / cost map
# asyncio.run(
# update_verification_token_cost(token=api_key, additional_cost=response_cost)
# )
# except:
# pass
def track_cost_callback(
kwargs, # kwargs to completion
completion_response: ModelResponse, # response from completion
start_time = None,
end_time = None, # start/end time for completion
):
try:
# init logging config
print("in custom callback tracking cost", llm_model_list)
if "azure" in kwargs["model"]:
# for azure cost tracking, we check the provided model list in the config.yaml
# we need to map azure/chatgpt-deployment to -> azure/gpt-3.5-turbo
pass
# check if it has collected an entire stream response
if "complete_streaming_response" in kwargs:
# for tracking streaming cost we pass the "messages" and the output_text to litellm.completion_cost
completion_response=kwargs["complete_streaming_response"]
input_text = kwargs["messages"]
output_text = completion_response["choices"][0]["message"]["content"]
response_cost = litellm.completion_cost(
model = kwargs["model"],
messages = input_text,
completion=output_text
)
print("streaming response_cost", response_cost)
# for non streaming responses
else:
# we pass the completion_response obj
if kwargs["stream"] != True:
input_text = kwargs.get("messages", "")
if isinstance(input_text, list):
input_text = "".join(m["content"] for m in input_text)
response_cost = litellm.completion_cost(completion_response=completion_response, completion=input_text)
print("regular response_cost", response_cost)
except:
pass
def update_prisma_database(token, response_cost):
try:
# Import your Prisma client
from your_prisma_module import prisma
# Fetch the existing cost for the given token
existing_cost = prisma.LiteLLM_VerificationToken.find_unique(
where={
"token": token
}
).cost
# Calculate the new cost by adding the existing cost and response_cost
new_cost = existing_cost + response_cost
# Update the cost column for the given token
prisma_liteLLM_VerificationToken = prisma.LiteLLM_VerificationToken.update(
where={
"token": token
},
data={
"cost": new_cost
}
)
print(f"Prisma database updated for token {token}. New cost: {new_cost}")
except Exception as e:
print(f"Error updating Prisma database: {e}")
pass