fix(router.py): cooldown deployments, for 401 errors

This commit is contained in:
Krrish Dholakia 2024-04-30 17:54:00 -07:00
parent 8ee51a96f4
commit 1baad80c7d
6 changed files with 165 additions and 14 deletions

View file

@ -387,6 +387,19 @@ def mock_completion(
- If 'stream' is True, it returns a response that mimics the behavior of a streaming completion.
"""
try:
## LOGGING
logging.pre_call(
input=messages,
api_key="mock-key",
)
if isinstance(mock_response, Exception):
raise litellm.APIError(
status_code=500, # type: ignore
message=str(mock_response),
llm_provider="openai", # type: ignore
model=model, # type: ignore
request=httpx.Request(method="POST", url="https://api.openai.com/v1/"),
)
model_response = ModelResponse(stream=stream)
if stream is True:
# don't try to access stream object,

View file

@ -1418,13 +1418,6 @@ class Router:
traceback.print_exc()
raise original_exception
async def _async_router_should_retry(
self, e: Exception, remaining_retries: int, num_retries: int
):
"""
Calculate back-off, then retry
"""
async def async_function_with_retries(self, *args, **kwargs):
verbose_router_logger.debug(
f"Inside async function with retries: args - {args}; kwargs - {kwargs}"
@ -1674,6 +1667,7 @@ class Router:
context_window_fallbacks = kwargs.pop(
"context_window_fallbacks", self.context_window_fallbacks
)
try:
# if the function call is successful, no exception will be raised and we'll break out of the loop
response = original_function(*args, **kwargs)
@ -1751,10 +1745,11 @@ class Router:
) # i.e. azure
metadata = kwargs.get("litellm_params", {}).get("metadata", None)
_model_info = kwargs.get("litellm_params", {}).get("model_info", {})
if isinstance(_model_info, dict):
deployment_id = _model_info.get("id", None)
self._set_cooldown_deployments(
deployment_id
exception_status=exception_status, deployment=deployment_id
) # setting deployment_id in cooldown deployments
if custom_llm_provider:
model_name = f"{custom_llm_provider}/{model_name}"
@ -1814,9 +1809,15 @@ class Router:
key=rpm_key, value=request_count, local_only=True
) # don't change existing ttl
def _set_cooldown_deployments(self, deployment: Optional[str] = None):
def _set_cooldown_deployments(
self, exception_status: Union[str, int], deployment: Optional[str] = None
):
"""
Add a model to the list of models being cooled down for that minute, if it exceeds the allowed fails / minute
or
the exception is not one that should be immediately retried (e.g. 401)
"""
if deployment is None:
return
@ -1833,7 +1834,20 @@ class Router:
f"Attempting to add {deployment} to cooldown list. updated_fails: {updated_fails}; self.allowed_fails: {self.allowed_fails}"
)
cooldown_time = self.cooldown_time or 1
if updated_fails > self.allowed_fails:
if isinstance(exception_status, str):
try:
exception_status = int(exception_status)
except Exception as e:
verbose_router_logger.debug(
"Unable to cast exception status to int {}. Defaulting to status=500.".format(
exception_status
)
)
exception_status = 500
_should_retry = litellm._should_retry(status_code=exception_status)
if updated_fails > self.allowed_fails or _should_retry == False:
# get the current cooldown list for that minute
cooldown_key = f"{current_minute}:cooldown_models" # group cooldown models by minute to reduce number of redis calls
cached_value = self.cache.get_cache(key=cooldown_key)

View file

@ -19,6 +19,7 @@ def setup_and_teardown():
0, os.path.abspath("../..")
) # Adds the project directory to the system path
import litellm
from litellm import Router
importlib.reload(litellm)
import asyncio

View file

@ -1154,6 +1154,7 @@ def test_consistent_model_id():
assert id1 == id2
@pytest.mark.skip(reason="local test")
def test_reading_keys_os_environ():
import openai
@ -1253,6 +1254,7 @@ def test_reading_keys_os_environ():
# test_reading_keys_os_environ()
@pytest.mark.skip(reason="local test")
def test_reading_openai_keys_os_environ():
import openai

View file

@ -22,10 +22,10 @@ class MyCustomHandler(CustomLogger):
def log_pre_api_call(self, model, messages, kwargs):
print(f"Pre-API Call")
print(
f"previous_models: {kwargs['litellm_params']['metadata']['previous_models']}"
f"previous_models: {kwargs['litellm_params']['metadata'].get('previous_models', None)}"
)
self.previous_models += len(
kwargs["litellm_params"]["metadata"]["previous_models"]
self.previous_models = len(
kwargs["litellm_params"]["metadata"].get("previous_models", [])
) # {"previous_models": [{"model": litellm_model_name, "exception_type": AuthenticationError, "exception_string": <complete_traceback>}]}
print(f"self.previous_models: {self.previous_models}")
@ -140,7 +140,7 @@ def test_sync_fallbacks():
@pytest.mark.asyncio
async def test_async_fallbacks():
litellm.set_verbose = False
litellm.set_verbose = True
model_list = [
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo", # openai model name

View file

@ -0,0 +1,121 @@
#### What this tests ####
# This tests calling router with fallback models
import sys, os, time
import traceback, asyncio
import pytest
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import Router
from litellm.integrations.custom_logger import CustomLogger
class MyCustomHandler(CustomLogger):
success: bool = False
failure: bool = False
previous_models: int = 0
def log_pre_api_call(self, model, messages, kwargs):
print(f"Pre-API Call")
print(
f"previous_models: {kwargs['litellm_params']['metadata'].get('previous_models', None)}"
)
self.previous_models = len(
kwargs["litellm_params"]["metadata"].get("previous_models", [])
) # {"previous_models": [{"model": litellm_model_name, "exception_type": AuthenticationError, "exception_string": <complete_traceback>}]}
print(f"self.previous_models: {self.previous_models}")
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
print(
f"Post-API Call - response object: {response_obj}; model: {kwargs['model']}"
)
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Stream")
def async_log_stream_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Stream")
def log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Success")
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Success")
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Failure")
"""
Test sync + async
- Authorization Errors
- Random API Error
"""
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.parametrize("error_type", ["Authorization Error", "API Error"])
@pytest.mark.asyncio
async def test_router_retries_errors(sync_mode, error_type):
"""
- Auth Error -> 0 retries
- API Error -> 2 retries
"""
_api_key = (
"bad-key" if error_type == "Authorization Error" else os.getenv("AZURE_API_KEY")
)
print(f"_api_key: {_api_key}")
model_list = [
{
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": _api_key,
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
]
router = Router(model_list=model_list, allowed_fails=3)
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
kwargs = {
"model": "azure/gpt-3.5-turbo",
"messages": messages,
"mock_response": (
None
if error_type == "Authorization Error"
else Exception("Invalid Request")
),
}
try:
if sync_mode:
response = router.completion(**kwargs)
else:
response = await router.acompletion(**kwargs)
except Exception as e:
pass
await asyncio.sleep(
0.05
) # allow a delay as success_callbacks are on a separate thread
print(f"customHandler.previous_models: {customHandler.previous_models}")
if error_type == "Authorization Error":
assert customHandler.previous_models == 0 # 0 retries
else:
assert customHandler.previous_models == 2 # 2 retries