raise exception if optional param is not mapped to model

This commit is contained in:
Krrish Dholakia 2023-10-02 11:17:44 -07:00
parent 49f65b7eb8
commit 1cae080eb2
8 changed files with 155 additions and 112 deletions

View file

@ -931,59 +931,62 @@ def get_optional_params( # use the openai defaults
# 12 optional params
functions=[],
function_call="",
temperature=1,
top_p=1,
n=1,
temperature=None,
top_p=None,
n=None,
stream=False,
stop=None,
max_tokens=float("inf"),
presence_penalty=0,
max_tokens=None,
presence_penalty=None,
frequency_penalty=0,
logit_bias={},
num_beams=1,
remove_input=False, # for nlp_cloud
user="",
deployment_id=None,
model=None,
custom_llm_provider="",
top_k=40,
return_full_text=False,
task=None,
**kwargs
):
# retrieve all parameters passed to the function
passed_params = locals()
special_params = passed_params.pop("kwargs")
for k, v in special_params.items():
passed_params[k] = v
default_params = {
"functions":[],
"function_call":"",
"temperature":1,
"top_p":1,
"n":1,
"stream":False,
"temperature":None,
"top_p":None,
"n":None,
"stream":None,
"stop":None,
"max_tokens":float("inf"),
"presence_penalty":0,
"frequency_penalty":0,
"max_tokens":None,
"presence_penalty":None,
"frequency_penalty":None,
"logit_bias":{},
"num_beams":1,
"remove_input":False, # for nlp_cloud
"user":"",
"deployment_id":None,
"model":None,
"custom_llm_provider":"",
"top_k":40,
"return_full_text":False,
"task":None,
}
# filter out those parameters that were passed with non-default values
non_default_params = {k: v for k, v in passed_params.items() if v != default_params[k]}
non_default_params = {k: v for k, v in passed_params.items() if (k != "model" and k != "custom_llm_provider" and k in default_params and v != default_params[k])}
## raise exception if function calling passed in for a provider that doesn't support it
if "functions" in non_default_params or "function_call" in non_default_params:
if custom_llm_provider != "openai" and custom_llm_provider != "text-completion-openai" and custom_llm_provider != "azure":
raise ValueError("LiteLLM.Exception: Function calling is not supported by this provider")
def _check_valid_arg(supported_params):
unsupported_params = [k for k in non_default_params.keys() if k not in supported_params]
if unsupported_params:
raise ValueError("LiteLLM.Exception: Unsupported parameters passed: {}".format(', '.join(unsupported_params)))
## raise exception if provider doesn't support passed in param
optional_params = {}
if custom_llm_provider == "anthropic":
## check if unsupported param passed in
supported_params = ["stream", "stop", "temperature", "top_p", "max_tokens"]
_check_valid_arg(supported_params=supported_params)
# handle anthropic params
if stream:
optional_params["stream"] = stream
@ -997,6 +1000,9 @@ def get_optional_params( # use the openai defaults
optional_params["max_tokens_to_sample"] = max_tokens
return optional_params
elif custom_llm_provider == "cohere":
## check if unsupported param passed in
supported_params = ["stream", "temperature", "max_tokens", "logit_bias"]
_check_valid_arg(supported_params=supported_params)
# handle cohere params
if stream:
optional_params["stream"] = stream
@ -1008,6 +1014,10 @@ def get_optional_params( # use the openai defaults
optional_params["logit_bias"] = logit_bias
return optional_params
elif custom_llm_provider == "replicate":
## check if unsupported param passed in
supported_params = ["stream", "temperature", "max_tokens", "top_p", "stop"]
_check_valid_arg(supported_params=supported_params)
if stream:
optional_params["stream"] = stream
return optional_params
@ -1020,11 +1030,13 @@ def get_optional_params( # use the openai defaults
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
if top_k != 40:
optional_params["top_k"] = top_k
if stop != None:
optional_params["stop_sequences"] = stop
elif custom_llm_provider == "huggingface":
## check if unsupported param passed in
supported_params = ["stream", "temperature", "max_tokens", "top_p", "stop", "return_full_text", "details"]
_check_valid_arg(supported_params=supported_params)
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
@ -1042,16 +1054,17 @@ def get_optional_params( # use the openai defaults
optional_params["repetition_penalty"] = presence_penalty
optional_params["return_full_text"] = return_full_text
optional_params["details"] = True
optional_params["task"] = task
elif custom_llm_provider == "together_ai":
## check if unsupported param passed in
supported_params = ["stream", "temperature", "max_tokens", "top_p", "stop", "frequency_penalty"]
_check_valid_arg(supported_params=supported_params)
if stream:
optional_params["stream_tokens"] = stream
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
if top_k != 40:
optional_params["top_k"] = top_k
if max_tokens != float("inf"):
optional_params["max_tokens"] = max_tokens
if frequency_penalty != 0:
@ -1059,41 +1072,29 @@ def get_optional_params( # use the openai defaults
if stop != None:
optional_params["stop"] = stop #TG AI expects a list, example ["\n\n\n\n","<|endoftext|>"]
elif custom_llm_provider == "palm":
## check if unsupported param passed in
supported_params = ["temperature", "top_p"]
_check_valid_arg(supported_params=supported_params)
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
elif (
model in litellm.vertex_chat_models or model in litellm.vertex_code_chat_models
): # chat-bison has diff args from chat-bison@001, ty Google :)
custom_llm_provider == "vertex_ai"
):
## check if unsupported param passed in
supported_params = ["temperature", "top_p", "max_tokens", "stream"]
_check_valid_arg(supported_params=supported_params)
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
if stream:
optional_params["stream"] = stream
if max_tokens != float("inf"):
optional_params["max_output_tokens"] = max_tokens
elif model in litellm.vertex_text_models:
# required params for all text vertex calls
# temperature=0.2, top_p=0.1, top_k=20
# always set temperature, top_p, top_k else, text bison fails
optional_params["temperature"] = temperature
optional_params["top_p"] = top_p
optional_params["top_k"] = top_k
if max_tokens != float("inf"):
optional_params["max_output_tokens"] = max_tokens
elif model in model in litellm.vertex_code_text_models:
optional_params["temperature"] = temperature
if max_tokens != float("inf"):
optional_params["max_output_tokens"] = max_tokens
elif custom_llm_provider == "baseten":
optional_params["temperature"] = temperature
optional_params["stream"] = stream
if top_p != 1:
optional_params["top_p"] = top_p
optional_params["top_k"] = top_k
optional_params["num_beams"] = num_beams
if max_tokens != float("inf"):
optional_params["max_new_tokens"] = max_tokens
elif custom_llm_provider == "sagemaker":
if "llama-2" in model:
# llama-2 models on sagemaker support the following args
@ -1103,14 +1104,24 @@ def get_optional_params( # use the openai defaults
top_p: In each step of text generation, sample from the smallest possible set of words with cumulative probability top_p. If specified, it must be a float between 0 and 1.
return_full_text: If True, input text will be part of the output generated text. If specified, it must be boolean. The default value for it is False.
"""
## check if unsupported param passed in
supported_params = ["temperature", "max_tokens"]
_check_valid_arg(supported_params=supported_params)
if max_tokens != float("inf"):
optional_params["max_new_tokens"] = max_tokens
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
else:
## check if unsupported param passed in
supported_params = []
_check_valid_arg(supported_params=supported_params)
elif custom_llm_provider == "bedrock":
if "ai21" in model:
supported_params = ["max_tokens", "temperature", "stop", "top_p"]
_check_valid_arg(supported_params=supported_params)
# params "maxTokens":200,"temperature":0,"topP":250,"stop_sequences":[],
# https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=j2-ultra
if max_tokens != float("inf"):
@ -1122,8 +1133,10 @@ def get_optional_params( # use the openai defaults
if top_p != 1:
optional_params["topP"] = top_p
elif "anthropic" in model:
supported_params = ["max_tokens", "temperature", "stop", "top_p"]
_check_valid_arg(supported_params=supported_params)
# anthropic params on bedrock
# \"max_tokens_to_sample\":300,\"temperature\":0.5,\"top_k\":250,\"top_p\":1,\"stop_sequences\":[\"\\\\n\\\\nHuman:\"]}"
# \"max_tokens_to_sample\":300,\"temperature\":0.5,\"top_p\":1,\"stop_sequences\":[\"\\\\n\\\\nHuman:\"]}"
if max_tokens != float("inf"):
optional_params["max_tokens_to_sample"] = max_tokens
else:
@ -1132,11 +1145,11 @@ def get_optional_params( # use the openai defaults
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
if top_k != 40:
optional_params["top_k"] = top_k
if stop != None:
optional_params["stop_sequences"] = stop
elif "amazon" in model: # amazon titan llms
supported_params = ["max_tokens", "temperature", "stop", "top_p"]
_check_valid_arg(supported_params=supported_params)
# see https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=titan-large
if max_tokens != float("inf"):
optional_params["maxTokenCount"] = max_tokens
@ -1148,14 +1161,14 @@ def get_optional_params( # use the openai defaults
optional_params["topP"] = top_p
elif model in litellm.aleph_alpha_models:
supported_params = ["max_tokens", "stream", "top_p", "temperature", "presence_penalty", "frequency_penalty", "n", "stop"]
_check_valid_arg(supported_params=supported_params)
if max_tokens != float("inf"):
optional_params["maximum_tokens"] = max_tokens
if stream:
optional_params["stream"] = stream
if temperature != 1:
optional_params["temperature"] = temperature
if top_k != 40:
optional_params["top_k"] = top_k
if top_p != 1:
optional_params["top_p"] = top_p
if presence_penalty != 0:
@ -1167,29 +1180,28 @@ def get_optional_params( # use the openai defaults
if stop != None:
optional_params["stop_sequences"] = stop
elif model in litellm.nlp_cloud_models or custom_llm_provider == "nlp_cloud":
supported_params = ["max_tokens", "stream", "temperature", "top_p", "presence_penalty", "frequency_penalty", "n", "stop"]
_check_valid_arg(supported_params=supported_params)
if max_tokens != float("inf"):
optional_params["max_length"] = max_tokens
if stream:
optional_params["stream"] = stream
if temperature != 1:
optional_params["temperature"] = temperature
if top_k != 40:
optional_params["top_k"] = top_k
if top_p != 1:
optional_params["top_p"] = top_p
if presence_penalty != 0:
optional_params["presence_penalty"] = presence_penalty
if frequency_penalty != 0:
optional_params["frequency_penalty"] = frequency_penalty
if num_beams != 1:
optional_params["num_beams"] = num_beams
if n != 1:
optional_params["num_return_sequences"] = n
if remove_input == True:
optional_params["remove_input"] = True
if stop != None:
optional_params["stop_sequences"] = stop
elif model in litellm.petals_models or custom_llm_provider == "petals":
supported_params = ["max_tokens", "temperature", "top_p"]
_check_valid_arg(supported_params=supported_params)
# max_new_tokens=1,temperature=0.9, top_p=0.6
if max_tokens != float("inf"):
optional_params["max_new_tokens"] = max_tokens
@ -1200,33 +1212,13 @@ def get_optional_params( # use the openai defaults
if top_p != 1:
optional_params["top_p"] = top_p
else: # assume passing in params for openai/azure openai
if functions != []:
optional_params["functions"] = functions
if function_call != "":
optional_params["function_call"] = function_call
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
if n != 1:
optional_params["n"] = n
if stream:
optional_params["stream"] = stream
if stop != None:
optional_params["stop"] = stop
if max_tokens != float("inf"):
optional_params["max_tokens"] = max_tokens
if presence_penalty != 0:
optional_params["presence_penalty"] = presence_penalty
if frequency_penalty != 0:
optional_params["frequency_penalty"] = frequency_penalty
if logit_bias != {}:
optional_params["logit_bias"] = logit_bias
if user != "":
optional_params["user"] = user
if deployment_id != None:
optional_params["deployment_id"] = deployment_id
return optional_params
supported_params = ["functions", "function_call", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "logit_bias", "user", "deployment_id"]
_check_valid_arg(supported_params=supported_params)
optional_params = non_default_params
# if user passed in non-default kwargs for specific providers/models, pass them along
for k in passed_params.keys():
if k not in default_params.keys():
optional_params[k] = passed_params[k]
return optional_params
def get_llm_provider(model: str, custom_llm_provider: Optional[str] = None):