test - remove anthropic_adapter tests. no longer used

This commit is contained in:
Ishaan Jaff 2025-03-06 06:47:35 -08:00
parent 29dc67a2aa
commit 1d2a9e423c

View file

@ -30,7 +30,6 @@ from litellm import (
Router,
adapter_completion,
)
from litellm.adapters.anthropic_adapter import anthropic_adapter
from litellm.types.llms.anthropic import AnthropicResponse
from litellm.types.utils import GenericStreamingChunk, ChatCompletionToolCallChunk
from litellm.types.llms.openai import ChatCompletionToolCallFunctionChunk
@ -40,65 +39,6 @@ from httpx import Headers
from base_llm_unit_tests import BaseLLMChatTest
def test_anthropic_completion_messages_translation():
messages = [{"role": "user", "content": "Hey, how's it going?"}]
translated_messages = AnthropicExperimentalPassThroughConfig().translate_anthropic_messages_to_openai(messages=messages) # type: ignore
assert translated_messages == [{"role": "user", "content": "Hey, how's it going?"}]
def test_anthropic_completion_input_translation():
data = {
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "Hey, how's it going?"}],
}
translated_input = anthropic_adapter.translate_completion_input_params(kwargs=data)
assert translated_input is not None
assert translated_input["model"] == "gpt-3.5-turbo"
assert translated_input["messages"] == [
{"role": "user", "content": "Hey, how's it going?"}
]
def test_anthropic_completion_input_translation_with_metadata():
"""
Tests that cost tracking works as expected with LiteLLM Proxy
LiteLLM Proxy will insert litellm_metadata for anthropic endpoints to track user_api_key and user_api_key_team_id
This test ensures that the `litellm_metadata` is not present in the translated input
It ensures that `litellm.acompletion()` will receieve metadata which is a litellm specific param
"""
data = {
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "Hey, how's it going?"}],
"litellm_metadata": {
"user_api_key": "88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",
"user_api_key_alias": None,
"user_api_end_user_max_budget": None,
"litellm_api_version": "1.40.19",
"global_max_parallel_requests": None,
"user_api_key_user_id": "default_user_id",
"user_api_key_org_id": None,
"user_api_key_team_id": None,
"user_api_key_team_alias": None,
"user_api_key_team_max_budget": None,
"user_api_key_team_spend": None,
"user_api_key_spend": 0.0,
"user_api_key_max_budget": None,
"user_api_key_metadata": {},
},
}
translated_input = anthropic_adapter.translate_completion_input_params(kwargs=data)
assert "litellm_metadata" not in translated_input
assert "metadata" in translated_input
assert translated_input["metadata"] == data["litellm_metadata"]
def streaming_format_tests(chunk: dict, idx: int):
"""
1st chunk - chunk.get("type") == "message_start"
@ -113,54 +53,6 @@ def streaming_format_tests(chunk: dict, idx: int):
assert chunk.get("type") == "content_block_delta"
@pytest.mark.parametrize("stream", [True]) # False
def test_anthropic_completion_e2e(stream):
litellm.set_verbose = True
litellm.adapters = [{"id": "anthropic", "adapter": anthropic_adapter}]
messages = [{"role": "user", "content": "Hey, how's it going?"}]
response = adapter_completion(
model="gpt-3.5-turbo",
messages=messages,
adapter_id="anthropic",
mock_response="This is a fake call",
stream=stream,
)
print("Response: {}".format(response))
assert response is not None
if stream is False:
assert isinstance(response, AnthropicResponse)
else:
"""
- ensure finish reason is returned
- assert content block is started and stopped
- ensure last chunk is 'message_stop'
"""
assert isinstance(response, litellm.types.utils.AdapterCompletionStreamWrapper)
finish_reason: Optional[str] = None
message_stop_received = False
content_block_started = False
content_block_finished = False
for idx, chunk in enumerate(response):
print(chunk)
streaming_format_tests(chunk=chunk, idx=idx)
if chunk.get("delta", {}).get("stop_reason") is not None:
finish_reason = chunk.get("delta", {}).get("stop_reason")
if chunk.get("type") == "message_stop":
message_stop_received = True
if chunk.get("type") == "content_block_stop":
content_block_finished = True
if chunk.get("type") == "content_block_start":
content_block_started = True
assert content_block_started and content_block_finished
assert finish_reason is not None
assert message_stop_received is True
anthropic_chunk_list = [
{
"type": "content_block_start",
@ -371,99 +263,6 @@ def test_anthropic_tool_streaming():
assert tool_use["index"] == correct_tool_index
def test_anthropic_tool_calling_translation():
kwargs = {
"model": "claude-3-5-sonnet-20240620",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Would development of a software platform be under ASC 350-40 or ASC 985?",
}
],
},
{
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "37d6f703-cbcc-497d-95a1-2aa24a114adc",
"name": "TaskPlanningTool",
"input": {
"completed_steps": [],
"next_steps": [
{
"tool_name": "AccountingResearchTool",
"description": "Research ASC 350-40 to understand its scope and applicability to software development.",
},
{
"tool_name": "AccountingResearchTool",
"description": "Research ASC 985 to understand its scope and applicability to software development.",
},
{
"tool_name": "AccountingResearchTool",
"description": "Compare the scopes of ASC 350-40 and ASC 985 to determine which is more applicable to software platform development.",
},
],
"learnings": [],
"potential_issues": [
"The distinction between the two standards might not be clear-cut for all types of software development.",
"There might be specific circumstances or details about the software platform that could affect which standard applies.",
],
"missing_info": [
"Specific details about the type of software platform being developed (e.g., for internal use or for sale).",
"Whether the entity developing the software is also the end-user or if it's being developed for external customers.",
],
"done": False,
"required_formatting": None,
},
}
],
},
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "eb7023b1-5ee8-43b8-b90f-ac5a23d37c31",
"content": {
"completed_steps": [],
"next_steps": [
{
"tool_name": "AccountingResearchTool",
"description": "Research ASC 350-40 to understand its scope and applicability to software development.",
},
{
"tool_name": "AccountingResearchTool",
"description": "Research ASC 985 to understand its scope and applicability to software development.",
},
{
"tool_name": "AccountingResearchTool",
"description": "Compare the scopes of ASC 350-40 and ASC 985 to determine which is more applicable to software platform development.",
},
],
"formatting_step": None,
},
}
],
},
],
}
from litellm.adapters.anthropic_adapter import anthropic_adapter
translated_params = anthropic_adapter.translate_completion_input_params(
kwargs=kwargs
)
print(translated_params["messages"])
assert len(translated_params["messages"]) > 0
assert translated_params["messages"][0]["role"] == "user"
def test_process_anthropic_headers_empty():
result = process_anthropic_headers({})
assert result == {}, "Expected empty dictionary for no input"