feat(main.py): support openai tts endpoint

Closes https://github.com/BerriAI/litellm/issues/3094
This commit is contained in:
Krrish Dholakia 2024-05-30 14:28:28 -07:00
parent 741bfb9cef
commit 1e89a1f56e
5 changed files with 322 additions and 3 deletions

View file

@ -91,6 +91,12 @@ import tiktoken
from concurrent.futures import ThreadPoolExecutor
from typing import Callable, List, Optional, Dict, Union, Mapping
from .caching import enable_cache, disable_cache, update_cache
from .types.llms.openai import (
StreamedBinaryAPIResponse,
ResponseContextManager,
AsyncResponseContextManager,
AsyncStreamedBinaryAPIResponse,
)
encoding = tiktoken.get_encoding("cl100k_base")
from litellm.utils import (
@ -4163,6 +4169,134 @@ def transcription(
return response
def aspeech(
*args, **kwargs
) -> AsyncResponseContextManager[AsyncStreamedBinaryAPIResponse]:
"""
Calls openai tts endpoints.
"""
loop = asyncio.get_event_loop()
model = args[0] if len(args) > 0 else kwargs["model"]
### PASS ARGS TO Image Generation ###
kwargs["aspeech"] = True
custom_llm_provider = kwargs.get("custom_llm_provider", None)
try:
# # Use a partial function to pass your keyword arguments
# func = partial(speech, *args, **kwargs)
# # Add the context to the function
# ctx = contextvars.copy_context()
# func_with_context = partial(ctx.run, func)
# _, custom_llm_provider, _, _ = get_llm_provider(
# model=model, api_base=kwargs.get("api_base", None)
# )
# # Await normally
# init_response = await loop.run_in_executor(None, func_with_context)
# if asyncio.iscoroutine(init_response):
# response = await init_response
# else:
# # Call the synchronous function using run_in_executor
# response = await loop.run_in_executor(None, func_with_context)
return speech(*args, **kwargs) # type: ignore
except Exception as e:
custom_llm_provider = custom_llm_provider or "openai"
raise exception_type(
model=model,
custom_llm_provider=custom_llm_provider,
original_exception=e,
completion_kwargs=args,
extra_kwargs=kwargs,
)
def speech(
model: str,
input: str,
voice: str,
optional_params: dict,
api_key: Optional[str],
api_base: Optional[str],
organization: Optional[str],
project: Optional[str],
max_retries: int,
timeout: Optional[Union[float, httpx.Timeout]] = None,
response_format: Optional[str] = None,
speed: Optional[int] = None,
client=None,
headers: Optional[dict] = None,
custom_llm_provider: Optional[str] = None,
aspeech: Optional[bool] = None,
) -> ResponseContextManager[StreamedBinaryAPIResponse]:
model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(model=model, custom_llm_provider=custom_llm_provider, api_base=api_base) # type: ignore
optional_params = {}
if response_format is not None:
optional_params["response_format"] = response_format
if speed is not None:
optional_params["speed"] = speed
if timeout is None:
timeout = litellm.request_timeout
response: Optional[ResponseContextManager[StreamedBinaryAPIResponse]] = None
if custom_llm_provider == "openai":
api_base = (
api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
or litellm.api_base
or get_secret("OPENAI_API_BASE")
or "https://api.openai.com/v1"
) # type: ignore
# set API KEY
api_key = (
api_key
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
or litellm.openai_key
or get_secret("OPENAI_API_KEY")
) # type: ignore
organization = (
organization
or litellm.organization
or get_secret("OPENAI_ORGANIZATION")
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
) # type: ignore
project = (
project
or litellm.project
or get_secret("OPENAI_PROJECT")
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
) # type: ignore
headers = headers or litellm.headers
response = openai_chat_completions.audio_speech(
model=model,
input=input,
voice=voice,
optional_params=optional_params,
api_key=api_key,
api_base=api_base,
organization=organization,
project=project,
max_retries=max_retries,
timeout=timeout,
client=client, # pass AsyncOpenAI, OpenAI client
aspeech=aspeech,
)
if response is None:
raise Exception(
"Unable to map the custom llm provider={} to a known provider={}.".format(
custom_llm_provider, litellm.provider_list
)
)
return response
##### Health Endpoints #######################