mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 19:24:27 +00:00
fix(parallel_request_limiter.py): decrement count for failed llm calls
https://github.com/BerriAI/litellm/issues/1477
This commit is contained in:
parent
37e6c6a59f
commit
1ea3833ef7
3 changed files with 350 additions and 27 deletions
|
@ -1,9 +1,10 @@
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
import litellm
|
import litellm, traceback
|
||||||
from litellm.caching import DualCache
|
from litellm.caching import DualCache
|
||||||
from litellm.proxy._types import UserAPIKeyAuth
|
from litellm.proxy._types import UserAPIKeyAuth
|
||||||
from litellm.integrations.custom_logger import CustomLogger
|
from litellm.integrations.custom_logger import CustomLogger
|
||||||
from fastapi import HTTPException
|
from fastapi import HTTPException
|
||||||
|
from litellm._logging import verbose_proxy_logger
|
||||||
|
|
||||||
|
|
||||||
class MaxParallelRequestsHandler(CustomLogger):
|
class MaxParallelRequestsHandler(CustomLogger):
|
||||||
|
@ -14,8 +15,7 @@ class MaxParallelRequestsHandler(CustomLogger):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def print_verbose(self, print_statement):
|
def print_verbose(self, print_statement):
|
||||||
if litellm.set_verbose is True:
|
verbose_proxy_logger.debug(print_statement)
|
||||||
print(print_statement) # noqa
|
|
||||||
|
|
||||||
async def async_pre_call_hook(
|
async def async_pre_call_hook(
|
||||||
self,
|
self,
|
||||||
|
@ -52,7 +52,7 @@ class MaxParallelRequestsHandler(CustomLogger):
|
||||||
|
|
||||||
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||||
try:
|
try:
|
||||||
self.print_verbose(f"INSIDE ASYNC SUCCESS LOGGING")
|
self.print_verbose(f"INSIDE parallel request limiter ASYNC SUCCESS LOGGING")
|
||||||
user_api_key = kwargs["litellm_params"]["metadata"]["user_api_key"]
|
user_api_key = kwargs["litellm_params"]["metadata"]["user_api_key"]
|
||||||
if user_api_key is None:
|
if user_api_key is None:
|
||||||
return
|
return
|
||||||
|
@ -61,28 +61,19 @@ class MaxParallelRequestsHandler(CustomLogger):
|
||||||
return
|
return
|
||||||
|
|
||||||
request_count_api_key = f"{user_api_key}_request_count"
|
request_count_api_key = f"{user_api_key}_request_count"
|
||||||
# check if it has collected an entire stream response
|
|
||||||
self.print_verbose(
|
|
||||||
f"'complete_streaming_response' is in kwargs: {'complete_streaming_response' in kwargs}"
|
|
||||||
)
|
|
||||||
if "complete_streaming_response" in kwargs or kwargs["stream"] != True:
|
|
||||||
# Decrease count for this token
|
# Decrease count for this token
|
||||||
current = (
|
current = self.user_api_key_cache.get_cache(key=request_count_api_key) or 1
|
||||||
self.user_api_key_cache.get_cache(key=request_count_api_key) or 1
|
|
||||||
)
|
|
||||||
new_val = current - 1
|
new_val = current - 1
|
||||||
self.print_verbose(f"updated_value in success call: {new_val}")
|
self.print_verbose(f"updated_value in success call: {new_val}")
|
||||||
self.user_api_key_cache.set_cache(request_count_api_key, new_val)
|
self.user_api_key_cache.set_cache(request_count_api_key, new_val)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
self.print_verbose(e) # noqa
|
self.print_verbose(e) # noqa
|
||||||
|
|
||||||
async def async_log_failure_call(
|
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
||||||
self, user_api_key_dict: UserAPIKeyAuth, original_exception: Exception
|
|
||||||
):
|
|
||||||
try:
|
try:
|
||||||
self.print_verbose(f"Inside Max Parallel Request Failure Hook")
|
self.print_verbose(f"Inside Max Parallel Request Failure Hook")
|
||||||
api_key = user_api_key_dict.api_key
|
user_api_key = kwargs["litellm_params"]["metadata"]["user_api_key"]
|
||||||
if api_key is None:
|
if user_api_key is None:
|
||||||
return
|
return
|
||||||
|
|
||||||
if self.user_api_key_cache is None:
|
if self.user_api_key_cache is None:
|
||||||
|
@ -90,13 +81,13 @@ class MaxParallelRequestsHandler(CustomLogger):
|
||||||
|
|
||||||
## decrement call count if call failed
|
## decrement call count if call failed
|
||||||
if (
|
if (
|
||||||
hasattr(original_exception, "status_code")
|
hasattr(kwargs["exception"], "status_code")
|
||||||
and original_exception.status_code == 429
|
and kwargs["exception"].status_code == 429
|
||||||
and "Max parallel request limit reached" in str(original_exception)
|
and "Max parallel request limit reached" in str(kwargs["exception"])
|
||||||
):
|
):
|
||||||
pass # ignore failed calls due to max limit being reached
|
pass # ignore failed calls due to max limit being reached
|
||||||
else:
|
else:
|
||||||
request_count_api_key = f"{api_key}_request_count"
|
request_count_api_key = f"{user_api_key}_request_count"
|
||||||
# Decrease count for this token
|
# Decrease count for this token
|
||||||
current = (
|
current = (
|
||||||
self.user_api_key_cache.get_cache(key=request_count_api_key) or 1
|
self.user_api_key_cache.get_cache(key=request_count_api_key) or 1
|
||||||
|
|
|
@ -1102,7 +1102,7 @@ async def generate_key_helper_fn(
|
||||||
}
|
}
|
||||||
if prisma_client is not None:
|
if prisma_client is not None:
|
||||||
## CREATE USER (If necessary)
|
## CREATE USER (If necessary)
|
||||||
verbose_proxy_logger.debug(f"CustomDBClient: Creating User={user_data}")
|
verbose_proxy_logger.debug(f"prisma_client: Creating User={user_data}")
|
||||||
user_row = await prisma_client.insert_data(
|
user_row = await prisma_client.insert_data(
|
||||||
data=user_data, table_name="user"
|
data=user_data, table_name="user"
|
||||||
)
|
)
|
||||||
|
@ -1111,7 +1111,7 @@ async def generate_key_helper_fn(
|
||||||
if len(user_row.models) > 0 and len(key_data["models"]) == 0: # type: ignore
|
if len(user_row.models) > 0 and len(key_data["models"]) == 0: # type: ignore
|
||||||
key_data["models"] = user_row.models
|
key_data["models"] = user_row.models
|
||||||
## CREATE KEY
|
## CREATE KEY
|
||||||
verbose_proxy_logger.debug(f"CustomDBClient: Creating Key={key_data}")
|
verbose_proxy_logger.debug(f"prisma_client: Creating Key={key_data}")
|
||||||
await prisma_client.insert_data(data=key_data, table_name="key")
|
await prisma_client.insert_data(data=key_data, table_name="key")
|
||||||
elif custom_db_client is not None:
|
elif custom_db_client is not None:
|
||||||
## CREATE USER (If necessary)
|
## CREATE USER (If necessary)
|
||||||
|
|
332
litellm/tests/test_parallel_request_limiter.py
Normal file
332
litellm/tests/test_parallel_request_limiter.py
Normal file
|
@ -0,0 +1,332 @@
|
||||||
|
# What this tests?
|
||||||
|
## Unit Tests for the max parallel request limiter for the proxy
|
||||||
|
|
||||||
|
import sys, os, asyncio, time, random
|
||||||
|
from datetime import datetime
|
||||||
|
import traceback
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
|
||||||
|
load_dotenv()
|
||||||
|
import os
|
||||||
|
|
||||||
|
sys.path.insert(
|
||||||
|
0, os.path.abspath("../..")
|
||||||
|
) # Adds the parent directory to the system path
|
||||||
|
import pytest
|
||||||
|
import litellm
|
||||||
|
from litellm import Router
|
||||||
|
from litellm.proxy.utils import ProxyLogging
|
||||||
|
from litellm.proxy._types import UserAPIKeyAuth
|
||||||
|
from litellm.caching import DualCache
|
||||||
|
from litellm.proxy.hooks.parallel_request_limiter import MaxParallelRequestsHandler
|
||||||
|
|
||||||
|
## On Request received
|
||||||
|
## On Request success
|
||||||
|
## On Request failure
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_pre_call_hook():
|
||||||
|
"""
|
||||||
|
Test if cache updated on call being received
|
||||||
|
"""
|
||||||
|
_api_key = "sk-12345"
|
||||||
|
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
|
||||||
|
local_cache = DualCache()
|
||||||
|
parallel_request_handler = MaxParallelRequestsHandler()
|
||||||
|
|
||||||
|
await parallel_request_handler.async_pre_call_hook(
|
||||||
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
||||||
|
)
|
||||||
|
|
||||||
|
print(
|
||||||
|
parallel_request_handler.user_api_key_cache.get_cache(
|
||||||
|
key=f"{_api_key}_request_count"
|
||||||
|
)
|
||||||
|
)
|
||||||
|
assert (
|
||||||
|
parallel_request_handler.user_api_key_cache.get_cache(
|
||||||
|
key=f"{_api_key}_request_count"
|
||||||
|
)
|
||||||
|
== 1
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_success_call_hook():
|
||||||
|
"""
|
||||||
|
Test if on success, cache correctly decremented
|
||||||
|
"""
|
||||||
|
_api_key = "sk-12345"
|
||||||
|
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
|
||||||
|
local_cache = DualCache()
|
||||||
|
parallel_request_handler = MaxParallelRequestsHandler()
|
||||||
|
|
||||||
|
await parallel_request_handler.async_pre_call_hook(
|
||||||
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
||||||
|
)
|
||||||
|
|
||||||
|
assert (
|
||||||
|
parallel_request_handler.user_api_key_cache.get_cache(
|
||||||
|
key=f"{_api_key}_request_count"
|
||||||
|
)
|
||||||
|
== 1
|
||||||
|
)
|
||||||
|
|
||||||
|
kwargs = {"litellm_params": {"metadata": {"user_api_key": _api_key}}}
|
||||||
|
|
||||||
|
await parallel_request_handler.async_log_success_event(
|
||||||
|
kwargs=kwargs, response_obj="", start_time="", end_time=""
|
||||||
|
)
|
||||||
|
|
||||||
|
assert (
|
||||||
|
parallel_request_handler.user_api_key_cache.get_cache(
|
||||||
|
key=f"{_api_key}_request_count"
|
||||||
|
)
|
||||||
|
== 0
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_failure_call_hook():
|
||||||
|
"""
|
||||||
|
Test if on failure, cache correctly decremented
|
||||||
|
"""
|
||||||
|
_api_key = "sk-12345"
|
||||||
|
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
|
||||||
|
local_cache = DualCache()
|
||||||
|
parallel_request_handler = MaxParallelRequestsHandler()
|
||||||
|
|
||||||
|
await parallel_request_handler.async_pre_call_hook(
|
||||||
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
||||||
|
)
|
||||||
|
|
||||||
|
assert (
|
||||||
|
parallel_request_handler.user_api_key_cache.get_cache(
|
||||||
|
key=f"{_api_key}_request_count"
|
||||||
|
)
|
||||||
|
== 1
|
||||||
|
)
|
||||||
|
|
||||||
|
kwargs = {
|
||||||
|
"litellm_params": {"metadata": {"user_api_key": _api_key}},
|
||||||
|
"exception": Exception(),
|
||||||
|
}
|
||||||
|
|
||||||
|
await parallel_request_handler.async_log_failure_event(
|
||||||
|
kwargs=kwargs, response_obj="", start_time="", end_time=""
|
||||||
|
)
|
||||||
|
|
||||||
|
assert (
|
||||||
|
parallel_request_handler.user_api_key_cache.get_cache(
|
||||||
|
key=f"{_api_key}_request_count"
|
||||||
|
)
|
||||||
|
== 0
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
Test with Router
|
||||||
|
- normal call
|
||||||
|
- streaming call
|
||||||
|
- bad call
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_normal_router_call():
|
||||||
|
model_list = [
|
||||||
|
{
|
||||||
|
"model_name": "azure-model",
|
||||||
|
"litellm_params": {
|
||||||
|
"model": "azure/gpt-turbo",
|
||||||
|
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
|
||||||
|
"api_base": "https://openai-france-1234.openai.azure.com",
|
||||||
|
"rpm": 1440,
|
||||||
|
},
|
||||||
|
"model_info": {"id": 1},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_name": "azure-model",
|
||||||
|
"litellm_params": {
|
||||||
|
"model": "azure/gpt-35-turbo",
|
||||||
|
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
|
||||||
|
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
|
||||||
|
"rpm": 6,
|
||||||
|
},
|
||||||
|
"model_info": {"id": 2},
|
||||||
|
},
|
||||||
|
]
|
||||||
|
router = Router(
|
||||||
|
model_list=model_list,
|
||||||
|
set_verbose=False,
|
||||||
|
num_retries=3,
|
||||||
|
) # type: ignore
|
||||||
|
|
||||||
|
_api_key = "sk-12345"
|
||||||
|
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
|
||||||
|
local_cache = DualCache()
|
||||||
|
pl = ProxyLogging(user_api_key_cache=local_cache)
|
||||||
|
pl._init_litellm_callbacks()
|
||||||
|
print(f"litellm callbacks: {litellm.callbacks}")
|
||||||
|
parallel_request_handler = pl.max_parallel_request_limiter
|
||||||
|
|
||||||
|
await parallel_request_handler.async_pre_call_hook(
|
||||||
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
||||||
|
)
|
||||||
|
|
||||||
|
assert (
|
||||||
|
parallel_request_handler.user_api_key_cache.get_cache(
|
||||||
|
key=f"{_api_key}_request_count"
|
||||||
|
)
|
||||||
|
== 1
|
||||||
|
)
|
||||||
|
|
||||||
|
# normal call
|
||||||
|
response = await router.acompletion(
|
||||||
|
model="azure-model",
|
||||||
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
||||||
|
metadata={"user_api_key": _api_key},
|
||||||
|
)
|
||||||
|
await asyncio.sleep(1) # success is done in a separate thread
|
||||||
|
print(f"response: {response}")
|
||||||
|
value = parallel_request_handler.user_api_key_cache.get_cache(
|
||||||
|
key=f"{_api_key}_request_count"
|
||||||
|
)
|
||||||
|
print(f"cache value: {value}")
|
||||||
|
|
||||||
|
assert value == 0
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_streaming_router_call():
|
||||||
|
model_list = [
|
||||||
|
{
|
||||||
|
"model_name": "azure-model",
|
||||||
|
"litellm_params": {
|
||||||
|
"model": "azure/gpt-turbo",
|
||||||
|
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
|
||||||
|
"api_base": "https://openai-france-1234.openai.azure.com",
|
||||||
|
"rpm": 1440,
|
||||||
|
},
|
||||||
|
"model_info": {"id": 1},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_name": "azure-model",
|
||||||
|
"litellm_params": {
|
||||||
|
"model": "azure/gpt-35-turbo",
|
||||||
|
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
|
||||||
|
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
|
||||||
|
"rpm": 6,
|
||||||
|
},
|
||||||
|
"model_info": {"id": 2},
|
||||||
|
},
|
||||||
|
]
|
||||||
|
router = Router(
|
||||||
|
model_list=model_list,
|
||||||
|
set_verbose=False,
|
||||||
|
num_retries=3,
|
||||||
|
) # type: ignore
|
||||||
|
|
||||||
|
_api_key = "sk-12345"
|
||||||
|
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
|
||||||
|
local_cache = DualCache()
|
||||||
|
pl = ProxyLogging(user_api_key_cache=local_cache)
|
||||||
|
pl._init_litellm_callbacks()
|
||||||
|
print(f"litellm callbacks: {litellm.callbacks}")
|
||||||
|
parallel_request_handler = pl.max_parallel_request_limiter
|
||||||
|
|
||||||
|
await parallel_request_handler.async_pre_call_hook(
|
||||||
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
||||||
|
)
|
||||||
|
|
||||||
|
assert (
|
||||||
|
parallel_request_handler.user_api_key_cache.get_cache(
|
||||||
|
key=f"{_api_key}_request_count"
|
||||||
|
)
|
||||||
|
== 1
|
||||||
|
)
|
||||||
|
|
||||||
|
# streaming call
|
||||||
|
response = await router.acompletion(
|
||||||
|
model="azure-model",
|
||||||
|
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
||||||
|
stream=True,
|
||||||
|
metadata={"user_api_key": _api_key},
|
||||||
|
)
|
||||||
|
async for chunk in response:
|
||||||
|
continue
|
||||||
|
await asyncio.sleep(1) # success is done in a separate thread
|
||||||
|
value = parallel_request_handler.user_api_key_cache.get_cache(
|
||||||
|
key=f"{_api_key}_request_count"
|
||||||
|
)
|
||||||
|
print(f"cache value: {value}")
|
||||||
|
|
||||||
|
assert value == 0
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_bad_router_call():
|
||||||
|
model_list = [
|
||||||
|
{
|
||||||
|
"model_name": "azure-model",
|
||||||
|
"litellm_params": {
|
||||||
|
"model": "azure/gpt-turbo",
|
||||||
|
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
|
||||||
|
"api_base": "https://openai-france-1234.openai.azure.com",
|
||||||
|
"rpm": 1440,
|
||||||
|
},
|
||||||
|
"model_info": {"id": 1},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_name": "azure-model",
|
||||||
|
"litellm_params": {
|
||||||
|
"model": "azure/gpt-35-turbo",
|
||||||
|
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
|
||||||
|
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
|
||||||
|
"rpm": 6,
|
||||||
|
},
|
||||||
|
"model_info": {"id": 2},
|
||||||
|
},
|
||||||
|
]
|
||||||
|
router = Router(
|
||||||
|
model_list=model_list,
|
||||||
|
set_verbose=False,
|
||||||
|
num_retries=3,
|
||||||
|
) # type: ignore
|
||||||
|
|
||||||
|
_api_key = "sk-12345"
|
||||||
|
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
|
||||||
|
local_cache = DualCache()
|
||||||
|
pl = ProxyLogging(user_api_key_cache=local_cache)
|
||||||
|
pl._init_litellm_callbacks()
|
||||||
|
print(f"litellm callbacks: {litellm.callbacks}")
|
||||||
|
parallel_request_handler = pl.max_parallel_request_limiter
|
||||||
|
|
||||||
|
await parallel_request_handler.async_pre_call_hook(
|
||||||
|
user_api_key_dict=user_api_key_dict, cache=local_cache, data={}, call_type=""
|
||||||
|
)
|
||||||
|
|
||||||
|
assert (
|
||||||
|
parallel_request_handler.user_api_key_cache.get_cache(
|
||||||
|
key=f"{_api_key}_request_count"
|
||||||
|
)
|
||||||
|
== 1
|
||||||
|
)
|
||||||
|
|
||||||
|
# bad streaming call
|
||||||
|
try:
|
||||||
|
response = await router.acompletion(
|
||||||
|
model="azure-model",
|
||||||
|
messages=[{"role": "user2", "content": "Hey, how's it going?"}],
|
||||||
|
stream=True,
|
||||||
|
metadata={"user_api_key": _api_key},
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
value = parallel_request_handler.user_api_key_cache.get_cache(
|
||||||
|
key=f"{_api_key}_request_count"
|
||||||
|
)
|
||||||
|
print(f"cache value: {value}")
|
||||||
|
|
||||||
|
assert value == 0
|
Loading…
Add table
Add a link
Reference in a new issue