Merge pull request #497 from coconut49/main

Update boto3 dependency to version 1.28.57, refactor bedrock client initialization and remove troubleshooting guide from documentation.
This commit is contained in:
Ishaan Jaff 2023-09-29 22:31:41 -07:00 committed by GitHub
commit 202d57f891
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
7 changed files with 50 additions and 76 deletions

View file

@ -32,8 +32,7 @@ jobs:
pip install -q google-generativeai
pip install openai[datalib]
pip install -Uq chromadb==0.3.29
pip install https://github.com/BerriAI/litellm/raw/main/cookbook/bedrock_resources/boto3-1.28.21-py3-none-any.whl
pip install https://github.com/BerriAI/litellm/raw/main/cookbook/bedrock_resources/botocore-1.31.21-py3-none-any.whl
pip install "boto3>=1.28.57"
- save_cache:
paths:
- ./venv

View file

@ -75,13 +75,3 @@ for chunk in response:
}
}
```
## Troubleshooting
If creating a boto3 bedrock client fails with `Unknown service: 'bedrock'`
Try re installing boto3 using the following commands
```shell
pip install https://github.com/BerriAI/litellm/raw/main/cookbook/bedrock_resources/boto3-1.28.21-py3-none-any.whl
pip install https://github.com/BerriAI/litellm/raw/main/cookbook/bedrock_resources/botocore-1.31.21-py3-none-any.whl
```
See Page 26 on [Amazon Bedrock User Guide](https://d2eo22ngex1n9g.cloudfront.net/Documentation/BedrockUserGuide.pdf)

View file

@ -1,11 +1,8 @@
import os
import json
from enum import Enum
import requests
import time
from typing import Callable
from litellm.utils import ModelResponse, get_secret
import sys
class BedrockError(Exception):
def __init__(self, status_code, message):
@ -15,38 +12,24 @@ class BedrockError(Exception):
self.message
) # Call the base class constructor with the parameters it needs
class AnthropicConstants(Enum):
HUMAN_PROMPT = "\n\nHuman:"
AI_PROMPT = "\n\nAssistant:"
def init_bedrock_client(region_name):
import sys
import boto3
import subprocess
try:
client = boto3.client(
service_name="bedrock",
region_name=region_name,
endpoint_url=f'https://bedrock.{region_name}.amazonaws.com'
)
except Exception as e:
try:
command1 = "python3 -m pip install https://github.com/BerriAI/litellm/raw/main/cookbook/bedrock_resources/boto3-1.28.21-py3-none-any.whl"
subprocess.run(command1, shell=True, check=True)
# Command 2: Install boto3 from URL
command2 = "python3 -m pip install https://github.com/BerriAI/litellm/raw/main/cookbook/bedrock_resources/botocore-1.31.21-py3-none-any.whl"
subprocess.run(command2, shell=True, check=True)
import boto3
client = boto3.client(
service_name="bedrock",
region_name=region_name,
endpoint_url=f'https://bedrock.{region_name}.amazonaws.com'
)
except Exception as e:
raise e
def init_bedrock_client(region_name):
import boto3
client = boto3.client(
service_name="bedrock-runtime",
region_name=region_name,
endpoint_url=f'https://bedrock-runtime.{region_name}.amazonaws.com'
)
return client
def convert_messages_to_prompt(messages, provider):
# handle anthropic prompts using anthropic constants
if provider == "anthropic":
@ -80,30 +63,31 @@ def convert_messages_to_prompt(messages, provider):
prompt += f"{message['content']}"
return prompt
"""
BEDROCK AUTH Keys/Vars
os.environ['AWS_ACCESS_KEY_ID'] = ""
os.environ['AWS_SECRET_ACCESS_KEY'] = ""
"""
# set os.environ['AWS_REGION_NAME'] = <your-region_name>
def completion(
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params=None,
stream=False,
litellm_params=None,
logger_fn=None,
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params=None,
stream=False,
litellm_params=None,
logger_fn=None,
):
region_name = (
get_secret("AWS_REGION_NAME") or
"us-west-2" # default to us-west-2 if user not specified
get_secret("AWS_REGION_NAME") or
"us-west-2" # default to us-west-2 if user not specified
)
client = init_bedrock_client(region_name)
@ -119,48 +103,48 @@ def completion(
elif provider == "ai21":
data = json.dumps({
"prompt": prompt,
})
})
else: # amazon titan
else: # amazon titan
data = json.dumps({
"inputText": prompt,
"inputText": prompt,
"textGenerationConfig": optional_params,
})
## LOGGING
})
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={"complete_input_dict": data},
)
input=prompt,
api_key="",
additional_args={"complete_input_dict": data},
)
## COMPLETION CALL
accept = 'application/json'
contentType = 'application/json'
if stream == True:
response = client.invoke_model_with_response_stream(
body=data,
modelId=model,
accept=accept,
body=data,
modelId=model,
accept=accept,
contentType=contentType
)
response = response.get('body')
return response
response = client.invoke_model(
body=data,
modelId=model,
accept=accept,
body=data,
modelId=model,
accept=accept,
contentType=contentType
)
response_body = json.loads(response.get('body').read())
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=response,
additional_args={"complete_input_dict": data},
)
input=prompt,
api_key="",
original_response=response,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response}")
## RESPONSE OBJECT
outputText = "default"
@ -169,7 +153,7 @@ def completion(
elif provider == "anthropic":
outputText = response_body['completion']
model_response["finish_reason"] = response_body["stop_reason"]
else: # amazon titan
else: # amazon titan
outputText = response_body.get('results')[0].get('outputText')
if "error" in outputText:
raise BedrockError(
@ -185,7 +169,7 @@ def completion(
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(
encoding.encode(prompt)
)
)
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"]["content"])
)
@ -199,6 +183,7 @@ def completion(
}
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass