test(test_spend_management_endpoints.py): update tests to be less sensitive to new keys / updates to usage object

This commit is contained in:
Krrish Dholakia 2025-04-19 08:59:47 -07:00
parent e077752bfe
commit 211fffce89

View file

@ -20,6 +20,16 @@ from litellm.proxy.hooks.proxy_track_cost_callback import _ProxyDBLogger
from litellm.proxy.proxy_server import app, prisma_client
from litellm.router import Router
ignored_keys = [
"request_id",
"startTime",
"endTime",
"completionStartTime",
"endTime",
"metadata.model_map_information",
"metadata.usage_object",
]
@pytest.fixture
def client():
@ -457,7 +467,7 @@ class TestSpendLogsPayload:
"model": "gpt-4o",
"user": "",
"team_id": "",
"metadata": '{"applied_guardrails": [], "batch_models": null, "mcp_tool_call_metadata": null, "usage_object": {"completion_tokens": 20, "prompt_tokens": 10, "total_tokens": 30, "completion_tokens_details": null, "prompt_tokens_details": null}, "model_map_information": {"model_map_key": "gpt-4o", "model_map_value": {"key": "gpt-4o", "max_tokens": 16384, "max_input_tokens": 128000, "max_output_tokens": 16384, "input_cost_per_token": 2.5e-06, "cache_creation_input_token_cost": null, "cache_read_input_token_cost": 1.25e-06, "input_cost_per_character": null, "input_cost_per_token_above_128k_tokens": null, "input_cost_per_token_above_200k_tokens": null, "input_cost_per_query": null, "input_cost_per_second": null, "input_cost_per_audio_token": null, "input_cost_per_token_batches": 1.25e-06, "output_cost_per_token_batches": 5e-06, "output_cost_per_token": 1e-05, "output_cost_per_audio_token": null, "output_cost_per_character": null, "output_cost_per_token_above_128k_tokens": null, "output_cost_per_character_above_128k_tokens": null, "output_cost_per_token_above_200k_tokens": null, "output_cost_per_second": null, "output_cost_per_image": null, "output_vector_size": null, "litellm_provider": "openai", "mode": "chat", "supports_system_messages": true, "supports_response_schema": true, "supports_vision": true, "supports_function_calling": true, "supports_tool_choice": true, "supports_assistant_prefill": false, "supports_prompt_caching": true, "supports_audio_input": false, "supports_audio_output": false, "supports_pdf_input": false, "supports_embedding_image_input": false, "supports_native_streaming": null, "supports_web_search": true, "supports_reasoning": false, "search_context_cost_per_query": {"search_context_size_low": 0.03, "search_context_size_medium": 0.035, "search_context_size_high": 0.05}, "tpm": null, "rpm": null, "supported_openai_params": ["frequency_penalty", "logit_bias", "logprobs", "top_logprobs", "max_tokens", "max_completion_tokens", "modalities", "prediction", "n", "presence_penalty", "seed", "stop", "stream", "stream_options", "temperature", "top_p", "tools", "tool_choice", "function_call", "functions", "max_retries", "extra_headers", "parallel_tool_calls", "audio", "response_format", "user"]}}, "additional_usage_values": {"completion_tokens_details": null, "prompt_tokens_details": null}}',
"metadata": '{"applied_guardrails": [], "batch_models": null, "mcp_tool_call_metadata": null, "usage_object": {"completion_tokens": 20, "prompt_tokens": 10, "total_tokens": 30, "completion_tokens_details": null, "prompt_tokens_details": null}, "model_map_information": {"model_map_key": "gpt-4o", "model_map_value": {"key": "gpt-4o", "max_tokens": 16384, "max_input_tokens": 128000, "max_output_tokens": 16384, "input_cost_per_token": 2.5e-06, "cache_creation_input_token_cost": null, "cache_read_input_token_cost": 1.25e-06, "input_cost_per_character": null, "input_cost_per_token_above_128k_tokens": null, "input_cost_per_token_above_200k_tokens": null, "input_cost_per_query": null, "input_cost_per_second": null, "input_cost_per_audio_token": null, "input_cost_per_token_batches": 1.25e-06, "output_cost_per_token_batches": 5e-06, "output_cost_per_token": 1e-05, "output_cost_per_audio_token": null, "output_cost_per_character": null, "output_cost_per_token_above_128k_tokens": null, "output_cost_per_character_above_128k_tokens": null, "output_cost_per_token_above_200k_tokens": null, "output_cost_per_second": null, "output_cost_per_reasoning_token": null, "output_cost_per_image": null, "output_vector_size": null, "litellm_provider": "openai", "mode": "chat", "supports_system_messages": true, "supports_response_schema": true, "supports_vision": true, "supports_function_calling": true, "supports_tool_choice": true, "supports_assistant_prefill": false, "supports_prompt_caching": true, "supports_audio_input": false, "supports_audio_output": false, "supports_pdf_input": false, "supports_embedding_image_input": false, "supports_native_streaming": null, "supports_web_search": true, "supports_reasoning": false, "search_context_cost_per_query": {"search_context_size_low": 0.03, "search_context_size_medium": 0.035, "search_context_size_high": 0.05}, "tpm": null, "rpm": null, "supported_openai_params": ["frequency_penalty", "logit_bias", "logprobs", "top_logprobs", "max_tokens", "max_completion_tokens", "modalities", "prediction", "n", "presence_penalty", "seed", "stop", "stream", "stream_options", "temperature", "top_p", "tools", "tool_choice", "function_call", "functions", "max_retries", "extra_headers", "parallel_tool_calls", "audio", "response_format", "user"]}}, "additional_usage_values": {"completion_tokens_details": null, "prompt_tokens_details": null}}',
"cache_key": "Cache OFF",
"spend": 0.00022500000000000002,
"total_tokens": 30,
@ -475,19 +485,11 @@ class TestSpendLogsPayload:
}
)
for key, value in expected_payload.items():
if key in [
"request_id",
"startTime",
"endTime",
"completionStartTime",
"endTime",
]:
assert payload[key] is not None
else:
assert (
payload[key] == value
), f"Expected {key} to be {value}, but got {payload[key]}"
differences = _compare_nested_dicts(
payload, expected_payload, ignore_keys=ignored_keys
)
if differences:
assert False, f"Dictionary mismatch: {differences}"
def mock_anthropic_response(*args, **kwargs):
mock_response = MagicMock()
@ -573,19 +575,11 @@ class TestSpendLogsPayload:
}
)
for key, value in expected_payload.items():
if key in [
"request_id",
"startTime",
"endTime",
"completionStartTime",
"endTime",
]:
assert payload[key] is not None
else:
assert (
payload[key] == value
), f"Expected {key} to be {value}, but got {payload[key]}"
differences = _compare_nested_dicts(
payload, expected_payload, ignore_keys=ignored_keys
)
if differences:
assert False, f"Dictionary mismatch: {differences}"
@pytest.mark.asyncio
async def test_spend_logs_payload_success_log_with_router(self):
@ -669,16 +663,71 @@ class TestSpendLogsPayload:
}
)
for key, value in expected_payload.items():
if key in [
"request_id",
"startTime",
"endTime",
"completionStartTime",
"endTime",
]:
assert payload[key] is not None
else:
assert (
payload[key] == value
), f"Expected {key} to be {value}, but got {payload[key]}"
differences = _compare_nested_dicts(
payload, expected_payload, ignore_keys=ignored_keys
)
if differences:
assert False, f"Dictionary mismatch: {differences}"
def _compare_nested_dicts(
actual: dict, expected: dict, path: str = "", ignore_keys: list[str] = []
) -> list[str]:
"""Compare nested dictionaries and return a list of differences in a human-friendly format."""
differences = []
# Check if current path should be ignored
if path in ignore_keys:
return differences
# Check for keys in actual but not in expected
for key in actual.keys():
current_path = f"{path}.{key}" if path else key
if current_path not in ignore_keys and key not in expected:
differences.append(f"Extra key in actual: {current_path}")
for key, expected_value in expected.items():
current_path = f"{path}.{key}" if path else key
if current_path in ignore_keys:
continue
if key not in actual:
differences.append(f"Missing key: {current_path}")
continue
actual_value = actual[key]
# Try to parse JSON strings
if isinstance(expected_value, str):
try:
expected_value = json.loads(expected_value)
except json.JSONDecodeError:
pass
if isinstance(actual_value, str):
try:
actual_value = json.loads(actual_value)
except json.JSONDecodeError:
pass
if isinstance(expected_value, dict) and isinstance(actual_value, dict):
differences.extend(
_compare_nested_dicts(
actual_value, expected_value, current_path, ignore_keys
)
)
elif isinstance(expected_value, dict) or isinstance(actual_value, dict):
differences.append(
f"Type mismatch at {current_path}: expected dict, got {type(actual_value).__name__}"
)
else:
# For non-dict values, only report if they're different
if actual_value != expected_value:
# Format the values to be more readable
actual_str = str(actual_value)
expected_str = str(expected_value)
if len(actual_str) > 50 or len(expected_str) > 50:
actual_str = f"{actual_str[:50]}..."
expected_str = f"{expected_str[:50]}..."
differences.append(
f"Value mismatch at {current_path}:\n expected: {expected_str}\n got: {actual_str}"
)
return differences