mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
Merge pull request #3393 from Priva28/main
Add Llama3 tokenizer and allow custom tokenizers.
This commit is contained in:
commit
2200900ca2
6 changed files with 98 additions and 24 deletions
|
@ -1,7 +1,7 @@
|
|||
# Completion Token Usage & Cost
|
||||
By default LiteLLM returns token usage in all completion requests ([See here](https://litellm.readthedocs.io/en/latest/output/))
|
||||
|
||||
However, we also expose 5 helper functions + **[NEW]** an API to calculate token usage across providers:
|
||||
However, we also expose some helper functions + **[NEW]** an API to calculate token usage across providers:
|
||||
|
||||
- `encode`: This encodes the text passed in, using the model-specific tokenizer. [**Jump to code**](#1-encode)
|
||||
|
||||
|
@ -9,17 +9,19 @@ However, we also expose 5 helper functions + **[NEW]** an API to calculate token
|
|||
|
||||
- `token_counter`: This returns the number of tokens for a given input - it uses the tokenizer based on the model, and defaults to tiktoken if no model-specific tokenizer is available. [**Jump to code**](#3-token_counter)
|
||||
|
||||
- `cost_per_token`: This returns the cost (in USD) for prompt (input) and completion (output) tokens. Uses the live list from `api.litellm.ai`. [**Jump to code**](#4-cost_per_token)
|
||||
- `create_pretrained_tokenizer` and `create_tokenizer`: LiteLLM provides default tokenizer support for OpenAI, Cohere, Anthropic, Llama2, and Llama3 models. If you are using a different model, you can create a custom tokenizer and pass it as `custom_tokenizer` to the `encode`, `decode`, and `token_counter` methods. [**Jump to code**](#4-create_pretrained_tokenizer-and-create_tokenizer)
|
||||
|
||||
- `completion_cost`: This returns the overall cost (in USD) for a given LLM API Call. It combines `token_counter` and `cost_per_token` to return the cost for that query (counting both cost of input and output). [**Jump to code**](#5-completion_cost)
|
||||
- `cost_per_token`: This returns the cost (in USD) for prompt (input) and completion (output) tokens. Uses the live list from `api.litellm.ai`. [**Jump to code**](#5-cost_per_token)
|
||||
|
||||
- `get_max_tokens`: This returns the maximum number of tokens allowed for the given model. [**Jump to code**](#6-get_max_tokens)
|
||||
- `completion_cost`: This returns the overall cost (in USD) for a given LLM API Call. It combines `token_counter` and `cost_per_token` to return the cost for that query (counting both cost of input and output). [**Jump to code**](#6-completion_cost)
|
||||
|
||||
- `model_cost`: This returns a dictionary for all models, with their max_tokens, input_cost_per_token and output_cost_per_token. It uses the `api.litellm.ai` call shown below. [**Jump to code**](#7-model_cost)
|
||||
- `get_max_tokens`: This returns the maximum number of tokens allowed for the given model. [**Jump to code**](#7-get_max_tokens)
|
||||
|
||||
- `register_model`: This registers new / overrides existing models (and their pricing details) in the model cost dictionary. [**Jump to code**](#8-register_model)
|
||||
- `model_cost`: This returns a dictionary for all models, with their max_tokens, input_cost_per_token and output_cost_per_token. It uses the `api.litellm.ai` call shown below. [**Jump to code**](#8-model_cost)
|
||||
|
||||
- `api.litellm.ai`: Live token + price count across [all supported models](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json). [**Jump to code**](#9-apilitellmai)
|
||||
- `register_model`: This registers new / overrides existing models (and their pricing details) in the model cost dictionary. [**Jump to code**](#9-register_model)
|
||||
|
||||
- `api.litellm.ai`: Live token + price count across [all supported models](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json). [**Jump to code**](#10-apilitellmai)
|
||||
|
||||
📣 This is a community maintained list. Contributions are welcome! ❤️
|
||||
|
||||
|
@ -60,7 +62,24 @@ messages = [{"user": "role", "content": "Hey, how's it going"}]
|
|||
print(token_counter(model="gpt-3.5-turbo", messages=messages))
|
||||
```
|
||||
|
||||
### 4. `cost_per_token`
|
||||
### 4. `create_pretrained_tokenizer` and `create_tokenizer`
|
||||
|
||||
```python
|
||||
from litellm import create_pretrained_tokenizer, create_tokenizer
|
||||
|
||||
# get tokenizer from huggingface repo
|
||||
custom_tokenizer_1 = create_pretrained_tokenizer("Xenova/llama-3-tokenizer")
|
||||
|
||||
# use tokenizer from json file
|
||||
with open("tokenizer.json") as f:
|
||||
json_data = json.load(f)
|
||||
|
||||
json_str = json.dumps(json_data)
|
||||
|
||||
custom_tokenizer_2 = create_tokenizer(json_str)
|
||||
```
|
||||
|
||||
### 5. `cost_per_token`
|
||||
|
||||
```python
|
||||
from litellm import cost_per_token
|
||||
|
@ -72,7 +91,7 @@ prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = cost_per_toke
|
|||
print(prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar)
|
||||
```
|
||||
|
||||
### 5. `completion_cost`
|
||||
### 6. `completion_cost`
|
||||
|
||||
* Input: Accepts a `litellm.completion()` response **OR** prompt + completion strings
|
||||
* Output: Returns a `float` of cost for the `completion` call
|
||||
|
@ -99,7 +118,7 @@ cost = completion_cost(model="bedrock/anthropic.claude-v2", prompt="Hey!", compl
|
|||
formatted_string = f"${float(cost):.10f}"
|
||||
print(formatted_string)
|
||||
```
|
||||
### 6. `get_max_tokens`
|
||||
### 7. `get_max_tokens`
|
||||
|
||||
Input: Accepts a model name - e.g., gpt-3.5-turbo (to get a complete list, call litellm.model_list).
|
||||
Output: Returns the maximum number of tokens allowed for the given model
|
||||
|
@ -112,7 +131,7 @@ model = "gpt-3.5-turbo"
|
|||
print(get_max_tokens(model)) # Output: 4097
|
||||
```
|
||||
|
||||
### 7. `model_cost`
|
||||
### 8. `model_cost`
|
||||
|
||||
* Output: Returns a dict object containing the max_tokens, input_cost_per_token, output_cost_per_token for all models on [community-maintained list](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json)
|
||||
|
||||
|
@ -122,7 +141,7 @@ from litellm import model_cost
|
|||
print(model_cost) # {'gpt-3.5-turbo': {'max_tokens': 4000, 'input_cost_per_token': 1.5e-06, 'output_cost_per_token': 2e-06}, ...}
|
||||
```
|
||||
|
||||
### 8. `register_model`
|
||||
### 9. `register_model`
|
||||
|
||||
* Input: Provide EITHER a model cost dictionary or a url to a hosted json blob
|
||||
* Output: Returns updated model_cost dictionary + updates litellm.model_cost with model details.
|
||||
|
@ -157,5 +176,3 @@ export LITELLM_LOCAL_MODEL_COST_MAP="True"
|
|||
```
|
||||
|
||||
Note: this means you will need to upgrade to get updated pricing, and newer models.
|
||||
|
||||
|
||||
|
|
|
@ -613,6 +613,8 @@ from .utils import (
|
|||
get_optional_params,
|
||||
modify_integration,
|
||||
token_counter,
|
||||
create_pretrained_tokenizer,
|
||||
create_tokenizer,
|
||||
cost_per_token,
|
||||
completion_cost,
|
||||
supports_function_calling,
|
||||
|
|
|
@ -34,6 +34,8 @@ from litellm.utils import (
|
|||
async_mock_completion_streaming_obj,
|
||||
convert_to_model_response_object,
|
||||
token_counter,
|
||||
create_pretrained_tokenizer,
|
||||
create_tokenizer,
|
||||
Usage,
|
||||
get_optional_params_embeddings,
|
||||
get_optional_params_image_gen,
|
||||
|
|
|
@ -9,7 +9,7 @@ sys.path.insert(
|
|||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import time
|
||||
from litellm import token_counter, encode, decode
|
||||
from litellm import token_counter, create_pretrained_tokenizer, encode, decode
|
||||
|
||||
|
||||
def test_token_counter_normal_plus_function_calling():
|
||||
|
@ -69,15 +69,23 @@ def test_tokenizers():
|
|||
model="meta-llama/Llama-2-7b-chat", text=sample_text
|
||||
)
|
||||
|
||||
# llama3 tokenizer (also testing custom tokenizer)
|
||||
llama3_tokens_1 = token_counter(model="meta-llama/llama-3-70b-instruct", text=sample_text)
|
||||
|
||||
llama3_tokenizer = create_pretrained_tokenizer("Xenova/llama-3-tokenizer")
|
||||
llama3_tokens_2 = token_counter(custom_tokenizer=llama3_tokenizer, text=sample_text)
|
||||
|
||||
print(
|
||||
f"openai tokens: {openai_tokens}; claude tokens: {claude_tokens}; cohere tokens: {cohere_tokens}; llama2 tokens: {llama2_tokens}"
|
||||
f"openai tokens: {openai_tokens}; claude tokens: {claude_tokens}; cohere tokens: {cohere_tokens}; llama2 tokens: {llama2_tokens}; llama3 tokens: {llama3_tokens_1}"
|
||||
)
|
||||
|
||||
# assert that all token values are different
|
||||
assert (
|
||||
openai_tokens != cohere_tokens != llama2_tokens
|
||||
openai_tokens != cohere_tokens != llama2_tokens != llama3_tokens_1
|
||||
), "Token values are not different."
|
||||
|
||||
assert llama3_tokens_1 == llama3_tokens_2, "Custom tokenizer is not being used! It has been configured to use the same tokenizer as the built in llama3 tokenizer and the results should be the same."
|
||||
|
||||
print("test tokenizer: It worked!")
|
||||
except Exception as e:
|
||||
pytest.fail(f"An exception occured: {e}")
|
||||
|
|
|
@ -20,6 +20,8 @@ from litellm.utils import (
|
|||
validate_environment,
|
||||
function_to_dict,
|
||||
token_counter,
|
||||
create_pretrained_tokenizer,
|
||||
create_tokenizer,
|
||||
)
|
||||
|
||||
# Assuming your trim_messages, shorten_message_to_fit_limit, and get_token_count functions are all in a module named 'message_utils'
|
||||
|
|
|
@ -3775,29 +3775,34 @@ def _select_tokenizer(model: str):
|
|||
elif "llama-2" in model.lower() or "replicate" in model.lower():
|
||||
tokenizer = Tokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
|
||||
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
|
||||
# llama3
|
||||
elif "llama-3" in model.lower():
|
||||
tokenizer = Tokenizer.from_pretrained("Xenova/llama-3-tokenizer")
|
||||
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
|
||||
# default - tiktoken
|
||||
else:
|
||||
return {"type": "openai_tokenizer", "tokenizer": encoding}
|
||||
|
||||
|
||||
def encode(model: str, text: str):
|
||||
def encode(model="", text="", custom_tokenizer: Optional[dict] = None):
|
||||
"""
|
||||
Encodes the given text using the specified model.
|
||||
|
||||
Args:
|
||||
model (str): The name of the model to use for tokenization.
|
||||
custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
|
||||
text (str): The text to be encoded.
|
||||
|
||||
Returns:
|
||||
enc: The encoded text.
|
||||
"""
|
||||
tokenizer_json = _select_tokenizer(model=model)
|
||||
tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
|
||||
enc = tokenizer_json["tokenizer"].encode(text)
|
||||
return enc
|
||||
|
||||
|
||||
def decode(model: str, tokens: List[int]):
|
||||
tokenizer_json = _select_tokenizer(model=model)
|
||||
def decode(model="", tokens: List[int] = [], custom_tokenizer: Optional[dict] = None):
|
||||
tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
|
||||
dec = tokenizer_json["tokenizer"].decode(tokens)
|
||||
return dec
|
||||
|
||||
|
@ -3971,8 +3976,45 @@ def calculage_img_tokens(
|
|||
return total_tokens
|
||||
|
||||
|
||||
def create_pretrained_tokenizer(
|
||||
identifier: str,
|
||||
revision="main",
|
||||
auth_token: Optional[str] = None
|
||||
):
|
||||
"""
|
||||
Creates a tokenizer from an existing file on a HuggingFace repository to be used with `token_counter`.
|
||||
|
||||
Args:
|
||||
identifier (str): The identifier of a Model on the Hugging Face Hub, that contains a tokenizer.json file
|
||||
revision (str, defaults to main): A branch or commit id
|
||||
auth_token (str, optional, defaults to None): An optional auth token used to access private repositories on the Hugging Face Hub
|
||||
|
||||
Returns:
|
||||
dict: A dictionary with the tokenizer and its type.
|
||||
"""
|
||||
|
||||
tokenizer = Tokenizer.from_pretrained(identifier, revision=revision, auth_token=auth_token)
|
||||
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
|
||||
|
||||
|
||||
def create_tokenizer(json: str):
|
||||
"""
|
||||
Creates a tokenizer from a valid JSON string for use with `token_counter`.
|
||||
|
||||
Args:
|
||||
json (str): A valid JSON string representing a previously serialized tokenizer
|
||||
|
||||
Returns:
|
||||
dict: A dictionary with the tokenizer and its type.
|
||||
"""
|
||||
|
||||
tokenizer = Tokenizer.from_str(json)
|
||||
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
|
||||
|
||||
|
||||
def token_counter(
|
||||
model="",
|
||||
custom_tokenizer: Optional[dict] = None,
|
||||
text: Optional[Union[str, List[str]]] = None,
|
||||
messages: Optional[List] = None,
|
||||
count_response_tokens: Optional[bool] = False,
|
||||
|
@ -3982,13 +4024,14 @@ def token_counter(
|
|||
|
||||
Args:
|
||||
model (str): The name of the model to use for tokenization. Default is an empty string.
|
||||
custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
|
||||
text (str): The raw text string to be passed to the model. Default is None.
|
||||
messages (Optional[List[Dict[str, str]]]): Alternative to passing in text. A list of dictionaries representing messages with "role" and "content" keys. Default is None.
|
||||
|
||||
Returns:
|
||||
int: The number of tokens in the text.
|
||||
"""
|
||||
# use tiktoken, anthropic, cohere or llama2's tokenizer depending on the model
|
||||
# use tiktoken, anthropic, cohere, llama2, or llama3's tokenizer depending on the model
|
||||
is_tool_call = False
|
||||
num_tokens = 0
|
||||
if text == None:
|
||||
|
@ -4030,8 +4073,8 @@ def token_counter(
|
|||
elif isinstance(text, str):
|
||||
count_response_tokens = True # user just trying to count tokens for a text. don't add the chat_ml +3 tokens to this
|
||||
|
||||
if model is not None:
|
||||
tokenizer_json = _select_tokenizer(model=model)
|
||||
if model is not None or custom_tokenizer is not None:
|
||||
tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
|
||||
if tokenizer_json["type"] == "huggingface_tokenizer":
|
||||
print_verbose(
|
||||
f"Token Counter - using hugging face token counter, for model={model}"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue