mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
Merge pull request #9222 from BerriAI/litellm_snowflake_pr_mar_13
[Feat] Add Snowflake Cortex to LiteLLM
This commit is contained in:
commit
241a36a74f
13 changed files with 766 additions and 0 deletions
89
docs/my-website/docs/providers/snowflake.md
Normal file
89
docs/my-website/docs/providers/snowflake.md
Normal file
|
@ -0,0 +1,89 @@
|
|||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
|
||||
# Snowflake
|
||||
| Property | Details |
|
||||
|-------|-------|
|
||||
| Description | The Snowflake Cortex LLM REST API lets you access the COMPLETE function via HTTP POST requests|
|
||||
| Provider Route on LiteLLM | `snowflake/` |
|
||||
| Link to Provider Doc | [Vertex AI ↗](https://docs.snowflake.com/en/user-guide/snowflake-cortex/cortex-llm-rest-api) |
|
||||
| Base URL | [https://{account-id}.snowflakecomputing.com/api/v2/cortex/inference:complete/](https://{account-id}.snowflakecomputing.com/api/v2/cortex/inference:complete) |
|
||||
| Supported Operations | `/completions`|
|
||||
|
||||
|
||||
|
||||
Currently, Snowflake's REST API does not have an endpoint for `snowflake-arctic-embed` embedding models. If you want to use these embedding models with Litellm, you can call them through our Hugging Face provider.
|
||||
|
||||
Find the Arctic Embed models [here](https://huggingface.co/collections/Snowflake/arctic-embed-661fd57d50fab5fc314e4c18) on Hugging Face.
|
||||
## Supported OpenAI Parameters
|
||||
```
|
||||
"temperature",
|
||||
"max_tokens",
|
||||
"top_p",
|
||||
"response_format"
|
||||
```
|
||||
|
||||
## API KEYS
|
||||
|
||||
Snowflake does have API keys. Instead, you access the Snowflake API with your JWT token and account identifier.
|
||||
|
||||
```python
|
||||
import os
|
||||
os.environ["SNOWFLAKE_JWT"] = "YOUR JWT"
|
||||
os.environ["SNOWFLAKE_ACCOUNT_ID"] = "YOUR ACCOUNT IDENTIFIER"
|
||||
```
|
||||
## Usage
|
||||
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
## set ENV variables
|
||||
os.environ["SNOWFLAKE_JWT"] = "YOUR JWT"
|
||||
os.environ["SNOWFLAKE_ACCOUNT_ID"] = "YOUR ACCOUNT IDENTIFIER"
|
||||
|
||||
# Snowflake call
|
||||
response = completion(
|
||||
model="snowflake/mistral-7b",
|
||||
messages = [{ "content": "Hello, how are you?","role": "user"}]
|
||||
)
|
||||
```
|
||||
|
||||
## Usage with LiteLLM Proxy
|
||||
|
||||
#### 1. Required env variables
|
||||
```bash
|
||||
export SNOWFLAKE_JWT=""
|
||||
export SNOWFLAKE_ACCOUNT_ID = ""
|
||||
```
|
||||
|
||||
#### 2. Start the proxy~
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: mistral-7b
|
||||
litellm_params:
|
||||
model: snowflake/mistral-7b
|
||||
api_key: YOUR_API_KEY
|
||||
api_base: https://YOUR-ACCOUNT-ID.snowflakecomputing.com/api/v2/cortex/inference:complete
|
||||
|
||||
```
|
||||
|
||||
```bash
|
||||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
#### 3. Test it
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data ' {
|
||||
"model": "snowflake/mistral-7b",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Hello, how are you?"
|
||||
}
|
||||
]
|
||||
}
|
||||
'
|
||||
```
|
|
@ -231,6 +231,7 @@ const sidebars = {
|
|||
"providers/sambanova",
|
||||
"providers/custom_llm_server",
|
||||
"providers/petals",
|
||||
"providers/snowflake"
|
||||
],
|
||||
},
|
||||
{
|
||||
|
|
|
@ -182,6 +182,7 @@ cloudflare_api_key: Optional[str] = None
|
|||
baseten_key: Optional[str] = None
|
||||
aleph_alpha_key: Optional[str] = None
|
||||
nlp_cloud_key: Optional[str] = None
|
||||
snowflake_key: Optional[str] = None
|
||||
common_cloud_provider_auth_params: dict = {
|
||||
"params": ["project", "region_name", "token"],
|
||||
"providers": ["vertex_ai", "bedrock", "watsonx", "azure", "vertex_ai_beta"],
|
||||
|
@ -416,6 +417,7 @@ cerebras_models: List = []
|
|||
galadriel_models: List = []
|
||||
sambanova_models: List = []
|
||||
assemblyai_models: List = []
|
||||
snowflake_models: List = []
|
||||
|
||||
|
||||
def is_bedrock_pricing_only_model(key: str) -> bool:
|
||||
|
@ -569,6 +571,8 @@ def add_known_models():
|
|||
assemblyai_models.append(key)
|
||||
elif value.get("litellm_provider") == "jina_ai":
|
||||
jina_ai_models.append(key)
|
||||
elif value.get("litellm_provider") == "snowflake":
|
||||
snowflake_models.append(key)
|
||||
|
||||
|
||||
add_known_models()
|
||||
|
@ -598,6 +602,7 @@ ollama_models = ["llama2"]
|
|||
|
||||
maritalk_models = ["maritalk"]
|
||||
|
||||
|
||||
model_list = (
|
||||
open_ai_chat_completion_models
|
||||
+ open_ai_text_completion_models
|
||||
|
@ -642,6 +647,7 @@ model_list = (
|
|||
+ azure_text_models
|
||||
+ assemblyai_models
|
||||
+ jina_ai_models
|
||||
+ snowflake_models
|
||||
)
|
||||
|
||||
model_list_set = set(model_list)
|
||||
|
@ -697,6 +703,7 @@ models_by_provider: dict = {
|
|||
"sambanova": sambanova_models,
|
||||
"assemblyai": assemblyai_models,
|
||||
"jina_ai": jina_ai_models,
|
||||
"snowflake": snowflake_models,
|
||||
}
|
||||
|
||||
# mapping for those models which have larger equivalents
|
||||
|
@ -813,6 +820,7 @@ from .llms.databricks.embed.transformation import DatabricksEmbeddingConfig
|
|||
from .llms.predibase.chat.transformation import PredibaseConfig
|
||||
from .llms.replicate.chat.transformation import ReplicateConfig
|
||||
from .llms.cohere.completion.transformation import CohereTextConfig as CohereConfig
|
||||
from .llms.snowflake.chat.transformation import SnowflakeConfig
|
||||
from .llms.cohere.rerank.transformation import CohereRerankConfig
|
||||
from .llms.cohere.rerank_v2.transformation import CohereRerankV2Config
|
||||
from .llms.azure_ai.rerank.transformation import AzureAIRerankConfig
|
||||
|
@ -932,6 +940,8 @@ from .llms.openai.chat.o_series_transformation import (
|
|||
OpenAIOSeriesConfig,
|
||||
)
|
||||
|
||||
from .llms.snowflake.chat.transformation import SnowflakeConfig
|
||||
|
||||
openaiOSeriesConfig = OpenAIOSeriesConfig()
|
||||
from .llms.openai.chat.gpt_transformation import (
|
||||
OpenAIGPTConfig,
|
||||
|
|
|
@ -571,6 +571,14 @@ def _get_openai_compatible_provider_info( # noqa: PLR0915
|
|||
or "https://api.galadriel.com/v1"
|
||||
) # type: ignore
|
||||
dynamic_api_key = api_key or get_secret_str("GALADRIEL_API_KEY")
|
||||
elif custom_llm_provider == "snowflake":
|
||||
api_base = (
|
||||
api_base
|
||||
or get_secret("SNOWFLAKE_API_BASE")
|
||||
or f"https://{get_secret('SNOWFLAKE_ACCOUNT_ID')}.snowflakecomputing.com/api/v2/cortex/inference:complete"
|
||||
) # type: ignore
|
||||
dynamic_api_key = api_key or get_secret("SNOWFLAKE_JWT")
|
||||
|
||||
if api_base is not None and not isinstance(api_base, str):
|
||||
raise Exception("api base needs to be a string. api_base={}".format(api_base))
|
||||
if dynamic_api_key is not None and not isinstance(dynamic_api_key, str):
|
||||
|
|
167
litellm/llms/snowflake/chat/transformation.py
Normal file
167
litellm/llms/snowflake/chat/transformation.py
Normal file
|
@ -0,0 +1,167 @@
|
|||
"""
|
||||
Support for Snowflake REST API
|
||||
"""
|
||||
|
||||
from typing import TYPE_CHECKING, Any, List, Optional, Tuple
|
||||
|
||||
import httpx
|
||||
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import AllMessageValues
|
||||
from litellm.types.utils import ModelResponse
|
||||
|
||||
from ...openai_like.chat.transformation import OpenAIGPTConfig
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
|
||||
|
||||
LiteLLMLoggingObj = _LiteLLMLoggingObj
|
||||
else:
|
||||
LiteLLMLoggingObj = Any
|
||||
|
||||
|
||||
class SnowflakeConfig(OpenAIGPTConfig):
|
||||
"""
|
||||
source: https://docs.snowflake.com/en/sql-reference/functions/complete-snowflake-cortex
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return super().get_config()
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> List:
|
||||
return ["temperature", "max_tokens", "top_p", "response_format"]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
"""
|
||||
If any supported_openai_params are in non_default_params, add them to optional_params, so they are used in API call
|
||||
|
||||
Args:
|
||||
non_default_params (dict): Non-default parameters to filter.
|
||||
optional_params (dict): Optional parameters to update.
|
||||
model (str): Model name for parameter support check.
|
||||
|
||||
Returns:
|
||||
dict: Updated optional_params with supported non-default parameters.
|
||||
"""
|
||||
supported_openai_params = self.get_supported_openai_params(model)
|
||||
for param, value in non_default_params.items():
|
||||
if param in supported_openai_params:
|
||||
optional_params[param] = value
|
||||
return optional_params
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: httpx.Response,
|
||||
model_response: ModelResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> ModelResponse:
|
||||
response_json = raw_response.json()
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
api_key="",
|
||||
original_response=response_json,
|
||||
additional_args={"complete_input_dict": request_data},
|
||||
)
|
||||
|
||||
returned_response = ModelResponse(**response_json)
|
||||
|
||||
returned_response.model = "snowflake/" + (returned_response.model or "")
|
||||
|
||||
if model is not None:
|
||||
returned_response._hidden_params["model"] = model
|
||||
return returned_response
|
||||
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: dict,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
) -> dict:
|
||||
"""
|
||||
Return headers to use for Snowflake completion request
|
||||
|
||||
Snowflake REST API Ref: https://docs.snowflake.com/en/user-guide/snowflake-cortex/cortex-llm-rest-api#api-reference
|
||||
Expected headers:
|
||||
{
|
||||
"Content-Type": "application/json",
|
||||
"Accept": "application/json",
|
||||
"Authorization": "Bearer " + <JWT>,
|
||||
"X-Snowflake-Authorization-Token-Type": "KEYPAIR_JWT"
|
||||
}
|
||||
"""
|
||||
|
||||
if api_key is None:
|
||||
raise ValueError("Missing Snowflake JWT key")
|
||||
|
||||
headers.update(
|
||||
{
|
||||
"Content-Type": "application/json",
|
||||
"Accept": "application/json",
|
||||
"Authorization": "Bearer " + api_key,
|
||||
"X-Snowflake-Authorization-Token-Type": "KEYPAIR_JWT",
|
||||
}
|
||||
)
|
||||
return headers
|
||||
|
||||
def _get_openai_compatible_provider_info(
|
||||
self, api_base: Optional[str], api_key: Optional[str]
|
||||
) -> Tuple[Optional[str], Optional[str]]:
|
||||
api_base = (
|
||||
api_base
|
||||
or f"""https://{get_secret_str("SNOWFLAKE_ACCOUNT_ID")}.snowflakecomputing.com/api/v2/cortex/inference:complete"""
|
||||
or get_secret_str("SNOWFLAKE_API_BASE")
|
||||
)
|
||||
dynamic_api_key = api_key or get_secret_str("SNOWFLAKE_JWT")
|
||||
return api_base, dynamic_api_key
|
||||
|
||||
def get_complete_url(
|
||||
self,
|
||||
api_base: Optional[str],
|
||||
model: str,
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
stream: Optional[bool] = None,
|
||||
) -> str:
|
||||
"""
|
||||
If api_base is not provided, use the default DeepSeek /chat/completions endpoint.
|
||||
"""
|
||||
if not api_base:
|
||||
api_base = f"""https://{get_secret_str("SNOWFLAKE_ACCOUNT_ID")}.snowflakecomputing.com/api/v2/cortex/inference:complete"""
|
||||
|
||||
return api_base
|
||||
|
||||
def transform_request(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
headers: dict,
|
||||
) -> dict:
|
||||
stream: bool = optional_params.pop("stream", None) or False
|
||||
extra_body = optional_params.pop("extra_body", {})
|
||||
return {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
"stream": stream,
|
||||
**optional_params,
|
||||
**extra_body,
|
||||
}
|
34
litellm/llms/snowflake/common_utils.py
Normal file
34
litellm/llms/snowflake/common_utils.py
Normal file
|
@ -0,0 +1,34 @@
|
|||
from typing import Optional
|
||||
|
||||
|
||||
class SnowflakeBase:
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: dict,
|
||||
JWT: Optional[str] = None,
|
||||
) -> dict:
|
||||
"""
|
||||
Return headers to use for Snowflake completion request
|
||||
|
||||
Snowflake REST API Ref: https://docs.snowflake.com/en/user-guide/snowflake-cortex/cortex-llm-rest-api#api-reference
|
||||
Expected headers:
|
||||
{
|
||||
"Content-Type": "application/json",
|
||||
"Accept": "application/json",
|
||||
"Authorization": "Bearer " + <JWT>,
|
||||
"X-Snowflake-Authorization-Token-Type": "KEYPAIR_JWT"
|
||||
}
|
||||
"""
|
||||
|
||||
if JWT is None:
|
||||
raise ValueError("Missing Snowflake JWT key")
|
||||
|
||||
headers.update(
|
||||
{
|
||||
"Content-Type": "application/json",
|
||||
"Accept": "application/json",
|
||||
"Authorization": "Bearer " + JWT,
|
||||
"X-Snowflake-Authorization-Token-Type": "KEYPAIR_JWT",
|
||||
}
|
||||
)
|
||||
return headers
|
|
@ -2986,6 +2986,38 @@ def completion( # type: ignore # noqa: PLR0915
|
|||
)
|
||||
return response
|
||||
response = model_response
|
||||
elif custom_llm_provider == "snowflake" or model in litellm.snowflake_models:
|
||||
try:
|
||||
client = HTTPHandler(timeout=timeout) if stream is False else None # Keep this here, otherwise, the httpx.client closes and streaming is impossible
|
||||
response = base_llm_http_handler.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
headers=headers,
|
||||
model_response=model_response,
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
acompletion=acompletion,
|
||||
logging_obj=logging,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
timeout=timeout, # type: ignore
|
||||
client= client,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
encoding=encoding,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
|
||||
except Exception as e:
|
||||
## LOGGING - log the original exception returned
|
||||
logging.post_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
original_response=str(e),
|
||||
additional_args={"headers": headers},
|
||||
)
|
||||
raise e
|
||||
|
||||
elif custom_llm_provider == "custom":
|
||||
url = litellm.api_base or api_base or ""
|
||||
if url is None or url == "":
|
||||
|
@ -3044,6 +3076,7 @@ def completion( # type: ignore # noqa: PLR0915
|
|||
model_response.created = int(time.time())
|
||||
model_response.model = model
|
||||
response = model_response
|
||||
|
||||
elif (
|
||||
custom_llm_provider in litellm._custom_providers
|
||||
): # Assume custom LLM provider
|
||||
|
|
|
@ -10067,5 +10067,173 @@
|
|||
"output_cost_per_token": 0.000000018,
|
||||
"litellm_provider": "jina_ai",
|
||||
"mode": "rerank"
|
||||
},
|
||||
"snowflake/deepseek-r1": {
|
||||
"max_tokens": 32768,
|
||||
"max_input_tokens": 32768,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/snowflake-arctic": {
|
||||
"max_tokens": 4096,
|
||||
"max_input_tokens": 4096,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/claude-3-5-sonnet": {
|
||||
"max_tokens": 18000,
|
||||
"max_input_tokens": 18000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/mistral-large": {
|
||||
"max_tokens": 32000,
|
||||
"max_input_tokens": 32000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/mistral-large2": {
|
||||
"max_tokens": 128000,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/reka-flash": {
|
||||
"max_tokens": 100000,
|
||||
"max_input_tokens": 100000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/reka-core": {
|
||||
"max_tokens": 32000,
|
||||
"max_input_tokens": 32000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/jamba-instruct": {
|
||||
"max_tokens": 256000,
|
||||
"max_input_tokens": 256000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/jamba-1.5-mini": {
|
||||
"max_tokens": 256000,
|
||||
"max_input_tokens": 256000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/jamba-1.5-large": {
|
||||
"max_tokens": 256000,
|
||||
"max_input_tokens": 256000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/mixtral-8x7b": {
|
||||
"max_tokens": 32000,
|
||||
"max_input_tokens": 32000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama2-70b-chat": {
|
||||
"max_tokens": 4096,
|
||||
"max_input_tokens": 4096,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama3-8b": {
|
||||
"max_tokens": 8000,
|
||||
"max_input_tokens": 8000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama3-70b": {
|
||||
"max_tokens": 8000,
|
||||
"max_input_tokens": 8000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama3.1-8b": {
|
||||
"max_tokens": 128000,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama3.1-70b": {
|
||||
"max_tokens": 128000,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama3.3-70b": {
|
||||
"max_tokens": 128000,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/snowflake-llama-3.3-70b": {
|
||||
"max_tokens": 8000,
|
||||
"max_input_tokens": 8000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama3.1-405b": {
|
||||
"max_tokens": 128000,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/snowflake-llama-3.1-405b": {
|
||||
"max_tokens": 8000,
|
||||
"max_input_tokens": 8000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama3.2-1b": {
|
||||
"max_tokens": 128000,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama3.2-3b": {
|
||||
"max_tokens": 128000,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/mistral-7b": {
|
||||
"max_tokens": 32000,
|
||||
"max_input_tokens": 32000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/gemma-7b": {
|
||||
"max_tokens": 8000,
|
||||
"max_input_tokens": 8000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1967,6 +1967,7 @@ class LlmProviders(str, Enum):
|
|||
HUMANLOOP = "humanloop"
|
||||
TOPAZ = "topaz"
|
||||
ASSEMBLYAI = "assemblyai"
|
||||
SNOWFLAKE = "snowflake"
|
||||
|
||||
|
||||
# Create a set of all provider values for quick lookup
|
||||
|
|
|
@ -6107,6 +6107,8 @@ class ProviderConfigManager:
|
|||
return litellm.CohereChatConfig()
|
||||
elif litellm.LlmProviders.COHERE == provider:
|
||||
return litellm.CohereConfig()
|
||||
elif litellm.LlmProviders.SNOWFLAKE == provider:
|
||||
return litellm.SnowflakeConfig()
|
||||
elif litellm.LlmProviders.CLARIFAI == provider:
|
||||
return litellm.ClarifaiConfig()
|
||||
elif litellm.LlmProviders.ANTHROPIC == provider:
|
||||
|
|
|
@ -10067,5 +10067,173 @@
|
|||
"output_cost_per_token": 0.000000018,
|
||||
"litellm_provider": "jina_ai",
|
||||
"mode": "rerank"
|
||||
},
|
||||
"snowflake/deepseek-r1": {
|
||||
"max_tokens": 32768,
|
||||
"max_input_tokens": 32768,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/snowflake-arctic": {
|
||||
"max_tokens": 4096,
|
||||
"max_input_tokens": 4096,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/claude-3-5-sonnet": {
|
||||
"max_tokens": 18000,
|
||||
"max_input_tokens": 18000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/mistral-large": {
|
||||
"max_tokens": 32000,
|
||||
"max_input_tokens": 32000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/mistral-large2": {
|
||||
"max_tokens": 128000,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/reka-flash": {
|
||||
"max_tokens": 100000,
|
||||
"max_input_tokens": 100000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/reka-core": {
|
||||
"max_tokens": 32000,
|
||||
"max_input_tokens": 32000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/jamba-instruct": {
|
||||
"max_tokens": 256000,
|
||||
"max_input_tokens": 256000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/jamba-1.5-mini": {
|
||||
"max_tokens": 256000,
|
||||
"max_input_tokens": 256000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/jamba-1.5-large": {
|
||||
"max_tokens": 256000,
|
||||
"max_input_tokens": 256000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/mixtral-8x7b": {
|
||||
"max_tokens": 32000,
|
||||
"max_input_tokens": 32000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama2-70b-chat": {
|
||||
"max_tokens": 4096,
|
||||
"max_input_tokens": 4096,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama3-8b": {
|
||||
"max_tokens": 8000,
|
||||
"max_input_tokens": 8000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama3-70b": {
|
||||
"max_tokens": 8000,
|
||||
"max_input_tokens": 8000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama3.1-8b": {
|
||||
"max_tokens": 128000,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama3.1-70b": {
|
||||
"max_tokens": 128000,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama3.3-70b": {
|
||||
"max_tokens": 128000,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/snowflake-llama-3.3-70b": {
|
||||
"max_tokens": 8000,
|
||||
"max_input_tokens": 8000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama3.1-405b": {
|
||||
"max_tokens": 128000,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/snowflake-llama-3.1-405b": {
|
||||
"max_tokens": 8000,
|
||||
"max_input_tokens": 8000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama3.2-1b": {
|
||||
"max_tokens": 128000,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/llama3.2-3b": {
|
||||
"max_tokens": 128000,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/mistral-7b": {
|
||||
"max_tokens": 32000,
|
||||
"max_input_tokens": 32000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
},
|
||||
"snowflake/gemma-7b": {
|
||||
"max_tokens": 8000,
|
||||
"max_input_tokens": 8000,
|
||||
"max_output_tokens": 8192,
|
||||
"litellm_provider": "snowflake",
|
||||
"mode": "chat"
|
||||
}
|
||||
}
|
||||
|
|
76
tests/llm_translation/test_snowflake.py
Normal file
76
tests/llm_translation/test_snowflake.py
Normal file
|
@ -0,0 +1,76 @@
|
|||
import os
|
||||
import sys
|
||||
import traceback
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
import pytest
|
||||
|
||||
from litellm import completion, acompletion
|
||||
|
||||
@pytest.mark.parametrize("sync_mode", [True, False])
|
||||
@pytest.mark.asyncio
|
||||
async def test_chat_completion_snowflake(sync_mode):
|
||||
try:
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Write me a poem about the blue sky",
|
||||
},
|
||||
]
|
||||
|
||||
if sync_mode:
|
||||
response = completion(
|
||||
model="snowflake/mistral-7b",
|
||||
messages=messages,
|
||||
api_base = "https://exampleopenaiendpoint-production.up.railway.app/v1/chat/completions"
|
||||
)
|
||||
print(response)
|
||||
assert response is not None
|
||||
else:
|
||||
response = await acompletion(
|
||||
model="snowflake/mistral-7b",
|
||||
messages=messages,
|
||||
api_base = "https://exampleopenaiendpoint-production.up.railway.app/v1/chat/completions"
|
||||
)
|
||||
print(response)
|
||||
assert response is not None
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("sync_mode", [True, False])
|
||||
async def test_chat_completion_snowflake_stream(sync_mode):
|
||||
try:
|
||||
set_verbose = True
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Write me a poem about the blue sky",
|
||||
},
|
||||
]
|
||||
|
||||
if sync_mode is False:
|
||||
response = await acompletion(
|
||||
model="snowflake/mistral-7b",
|
||||
messages=messages,
|
||||
max_tokens=100,
|
||||
stream=True,
|
||||
api_base = "https://exampleopenaiendpoint-production.up.railway.app/v1/chat/completions"
|
||||
)
|
||||
|
||||
async for chunk in response:
|
||||
print(chunk)
|
||||
else:
|
||||
response = completion(
|
||||
model="snowflake/mistral-7b",
|
||||
messages=messages,
|
||||
max_tokens=100,
|
||||
stream=True,
|
||||
api_base = "https://exampleopenaiendpoint-production.up.railway.app/v1/chat/completions"
|
||||
)
|
||||
|
||||
for chunk in response:
|
||||
print(chunk)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
|
@ -55,6 +55,7 @@ def make_config_map(config: dict):
|
|||
),
|
||||
)
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.skip(reason="lakera deprecated their v1 endpoint.")
|
||||
async def test_lakera_prompt_injection_detection():
|
||||
"""
|
||||
Tests to see OpenAI Moderation raises an error for a flagged response
|
||||
|
@ -121,6 +122,7 @@ async def test_lakera_prompt_injection_detection():
|
|||
),
|
||||
)
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.skip(reason="lakera deprecated their v1 endpoint.")
|
||||
async def test_lakera_safe_prompt():
|
||||
"""
|
||||
Nothing should get raised here
|
||||
|
@ -146,6 +148,7 @@ async def test_lakera_safe_prompt():
|
|||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.skip(reason="lakera deprecated their v1 endpoint.")
|
||||
async def test_moderations_on_embeddings():
|
||||
try:
|
||||
temp_router = litellm.Router(
|
||||
|
@ -208,6 +211,7 @@ async def test_moderations_on_embeddings():
|
|||
}
|
||||
),
|
||||
)
|
||||
@pytest.mark.skip(reason="lakera deprecated their v1 endpoint.")
|
||||
async def test_messages_for_disabled_role(spy_post):
|
||||
moderation = lakeraAI_Moderation()
|
||||
data = {
|
||||
|
@ -246,6 +250,7 @@ async def test_messages_for_disabled_role(spy_post):
|
|||
),
|
||||
)
|
||||
@patch("litellm.add_function_to_prompt", False)
|
||||
@pytest.mark.skip(reason="lakera deprecated their v1 endpoint.")
|
||||
async def test_system_message_with_function_input(spy_post):
|
||||
moderation = lakeraAI_Moderation()
|
||||
data = {
|
||||
|
@ -290,6 +295,7 @@ async def test_system_message_with_function_input(spy_post):
|
|||
),
|
||||
)
|
||||
@patch("litellm.add_function_to_prompt", False)
|
||||
@pytest.mark.skip(reason="lakera deprecated their v1 endpoint.")
|
||||
async def test_multi_message_with_function_input(spy_post):
|
||||
moderation = lakeraAI_Moderation()
|
||||
data = {
|
||||
|
@ -337,6 +343,7 @@ async def test_multi_message_with_function_input(spy_post):
|
|||
}
|
||||
),
|
||||
)
|
||||
@pytest.mark.skip(reason="lakera deprecated their v1 endpoint.")
|
||||
async def test_message_ordering(spy_post):
|
||||
moderation = lakeraAI_Moderation()
|
||||
data = {
|
||||
|
@ -363,6 +370,7 @@ async def test_message_ordering(spy_post):
|
|||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.skip(reason="lakera deprecated their v1 endpoint.")
|
||||
async def test_callback_specific_param_run_pre_call_check_lakera():
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
|
@ -409,6 +417,7 @@ async def test_callback_specific_param_run_pre_call_check_lakera():
|
|||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.skip(reason="lakera deprecated their v1 endpoint.")
|
||||
async def test_callback_specific_thresholds():
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue