mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
(chore) remove deprecated completion_with_config() tests
This commit is contained in:
parent
cc07ba1d6a
commit
248e5f3d92
4 changed files with 0 additions and 295 deletions
|
@ -1,49 +0,0 @@
|
|||
# Model Config
|
||||
|
||||
Model-specific changes can make our code complicated, making it harder to debug errors. Use model configs to simplify this.
|
||||
|
||||
### usage
|
||||
|
||||
Handling prompt logic. Different models have different context windows. Use `adapt_to_prompt_size` to select the right model for the prompt (in case the current model is too small).
|
||||
|
||||
|
||||
```python
|
||||
from litellm import completion_with_config
|
||||
import os
|
||||
|
||||
config = {
|
||||
"available_models": ["gpt-3.5-turbo", "claude-instant-1", "gpt-3.5-turbo-16k"],
|
||||
"adapt_to_prompt_size": True, # 👈 key change
|
||||
}
|
||||
|
||||
# set env var
|
||||
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
||||
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
|
||||
|
||||
|
||||
sample_text = "how does a court case get to the Supreme Court?" * 1000
|
||||
messages = [{"content": sample_text, "role": "user"}]
|
||||
response = completion_with_config(model="gpt-3.5-turbo", messages=messages, config=config)
|
||||
```
|
||||
|
||||
[**See Code**](https://github.com/BerriAI/litellm/blob/30724d9e51cdc2c3e0eb063271b4f171bc01b382/litellm/utils.py#L2783)
|
||||
|
||||
### Complete Config Structure
|
||||
|
||||
```python
|
||||
config = {
|
||||
"default_fallback_models": # [Optional] List of model names to try if a call fails
|
||||
"available_models": # [Optional] List of all possible models you could call
|
||||
"adapt_to_prompt_size": # [Optional] True/False - if you want to select model based on prompt size (will pick from available_models)
|
||||
"model": {
|
||||
"model-name": {
|
||||
"needs_moderation": # [Optional] True/False - if you want to call openai moderations endpoint before making completion call. Will raise exception, if flagged.
|
||||
"error_handling": {
|
||||
"error-type": { # One of the errors listed here - https://docs.litellm.ai/docs/exception_mapping#custom-mapping-list
|
||||
"fallback_model": "" # str, name of the model it should try instead, when that error occurs
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
|
@ -500,7 +500,6 @@ from .utils import (
|
|||
validate_environment,
|
||||
check_valid_key,
|
||||
get_llm_provider,
|
||||
completion_with_config,
|
||||
register_model,
|
||||
encode,
|
||||
decode,
|
||||
|
|
|
@ -1,118 +0,0 @@
|
|||
import sys, os
|
||||
import traceback
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
import os
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import pytest
|
||||
import litellm
|
||||
from litellm import completion_with_config
|
||||
|
||||
config = {
|
||||
"default_fallback_models": ["gpt-3.5-turbo", "claude-instant-1", "j2-ultra"],
|
||||
"model": {
|
||||
"claude-instant-1": {"needs_moderation": True},
|
||||
"gpt-3.5-turbo": {
|
||||
"error_handling": {
|
||||
"ContextWindowExceededError": {"fallback_model": "gpt-3.5-turbo-16k"}
|
||||
}
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def test_config_context_window_exceeded():
|
||||
try:
|
||||
sample_text = "how does a court case get to the Supreme Court?" * 1000
|
||||
messages = [{"content": sample_text, "role": "user"}]
|
||||
response = completion_with_config(
|
||||
model="gpt-3.5-turbo", messages=messages, config=config
|
||||
)
|
||||
print(response)
|
||||
except Exception as e:
|
||||
print(f"Exception: {e}")
|
||||
pytest.fail(f"An exception occurred: {e}")
|
||||
|
||||
|
||||
# test_config_context_window_exceeded()
|
||||
|
||||
|
||||
def test_config_context_moderation():
|
||||
try:
|
||||
messages = [{"role": "user", "content": "I want to kill them."}]
|
||||
response = completion_with_config(
|
||||
model="claude-instant-1", messages=messages, config=config
|
||||
)
|
||||
print(response)
|
||||
except Exception as e:
|
||||
print(f"Exception: {e}")
|
||||
pytest.fail(f"An exception occurred: {e}")
|
||||
|
||||
|
||||
# test_config_context_moderation()
|
||||
|
||||
|
||||
def test_config_context_default_fallback():
|
||||
try:
|
||||
messages = [{"role": "user", "content": "Hey, how's it going?"}]
|
||||
response = completion_with_config(
|
||||
model="claude-instant-1",
|
||||
messages=messages,
|
||||
config=config,
|
||||
api_key="bad-key",
|
||||
)
|
||||
print(response)
|
||||
except Exception as e:
|
||||
print(f"Exception: {e}")
|
||||
pytest.fail(f"An exception occurred: {e}")
|
||||
|
||||
|
||||
# test_config_context_default_fallback()
|
||||
|
||||
|
||||
config = {
|
||||
"default_fallback_models": ["gpt-3.5-turbo", "claude-instant-1", "j2-ultra"],
|
||||
"available_models": [
|
||||
"gpt-3.5-turbo",
|
||||
"gpt-3.5-turbo-0301",
|
||||
"gpt-3.5-turbo-0613",
|
||||
"gpt-4",
|
||||
"gpt-4-0314",
|
||||
"gpt-4-0613",
|
||||
"j2-ultra",
|
||||
"command-nightly",
|
||||
"togethercomputer/llama-2-70b-chat",
|
||||
"chat-bison",
|
||||
"chat-bison@001",
|
||||
"claude-2",
|
||||
],
|
||||
"adapt_to_prompt_size": True, # type: ignore
|
||||
"model": {
|
||||
"claude-instant-1": {"needs_moderation": True},
|
||||
"gpt-3.5-turbo": {
|
||||
"error_handling": {
|
||||
"ContextWindowExceededError": {"fallback_model": "gpt-3.5-turbo-16k"}
|
||||
}
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def test_config_context_adapt_to_prompt():
|
||||
try:
|
||||
sample_text = "how does a court case get to the Supreme Court?" * 1000
|
||||
messages = [{"content": sample_text, "role": "user"}]
|
||||
response = completion_with_config(
|
||||
model="gpt-3.5-turbo", messages=messages, config=config
|
||||
)
|
||||
print(response)
|
||||
except Exception as e:
|
||||
print(f"Exception: {e}")
|
||||
pytest.fail(f"An exception occurred: {e}")
|
||||
|
||||
|
||||
test_config_context_adapt_to_prompt()
|
127
litellm/utils.py
127
litellm/utils.py
|
@ -7843,133 +7843,6 @@ def read_config_args(config_path) -> dict:
|
|||
########## experimental completion variants ############################
|
||||
|
||||
|
||||
def completion_with_config(config: Union[dict, str], **kwargs):
|
||||
"""
|
||||
Generate a litellm.completion() using a config dict and all supported completion args
|
||||
|
||||
Example config;
|
||||
config = {
|
||||
"default_fallback_models": # [Optional] List of model names to try if a call fails
|
||||
"available_models": # [Optional] List of all possible models you could call
|
||||
"adapt_to_prompt_size": # [Optional] True/False - if you want to select model based on prompt size (will pick from available_models)
|
||||
"model": {
|
||||
"model-name": {
|
||||
"needs_moderation": # [Optional] True/False - if you want to call openai moderations endpoint before making completion call. Will raise exception, if flagged.
|
||||
"error_handling": {
|
||||
"error-type": { # One of the errors listed here - https://docs.litellm.ai/docs/exception_mapping#custom-mapping-list
|
||||
"fallback_model": "" # str, name of the model it should try instead, when that error occurs
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Parameters:
|
||||
config (Union[dict, str]): A configuration for litellm
|
||||
**kwargs: Additional keyword arguments for litellm.completion
|
||||
|
||||
Returns:
|
||||
litellm.ModelResponse: A ModelResponse with the generated completion
|
||||
|
||||
"""
|
||||
if config is not None:
|
||||
if isinstance(config, str):
|
||||
config = read_config_args(config)
|
||||
elif isinstance(config, dict):
|
||||
config = config
|
||||
else:
|
||||
raise Exception("Config path must be a string or a dictionary.")
|
||||
else:
|
||||
raise Exception("Config path not passed in.")
|
||||
|
||||
if config is None:
|
||||
raise Exception("No completion config in the config file")
|
||||
|
||||
models_with_config = config["model"].keys()
|
||||
model = kwargs["model"]
|
||||
messages = kwargs["messages"]
|
||||
|
||||
## completion config
|
||||
fallback_models = config.get("default_fallback_models", None)
|
||||
available_models = config.get("available_models", None)
|
||||
adapt_to_prompt_size = config.get("adapt_to_prompt_size", False)
|
||||
trim_messages_flag = config.get("trim_messages", False)
|
||||
prompt_larger_than_model = False
|
||||
max_model = model
|
||||
try:
|
||||
max_tokens = litellm.get_max_tokens(model)["max_tokens"]
|
||||
except:
|
||||
max_tokens = 2048 # assume curr model's max window is 2048 tokens
|
||||
if adapt_to_prompt_size:
|
||||
## Pick model based on token window
|
||||
prompt_tokens = litellm.token_counter(
|
||||
model="gpt-3.5-turbo",
|
||||
text="".join(message["content"] for message in messages),
|
||||
)
|
||||
try:
|
||||
curr_max_tokens = litellm.get_max_tokens(model)["max_tokens"]
|
||||
except:
|
||||
curr_max_tokens = 2048
|
||||
if curr_max_tokens < prompt_tokens:
|
||||
prompt_larger_than_model = True
|
||||
for available_model in available_models:
|
||||
try:
|
||||
curr_max_tokens = litellm.get_max_tokens(available_model)[
|
||||
"max_tokens"
|
||||
]
|
||||
if curr_max_tokens > max_tokens:
|
||||
max_tokens = curr_max_tokens
|
||||
max_model = available_model
|
||||
if curr_max_tokens > prompt_tokens:
|
||||
model = available_model
|
||||
prompt_larger_than_model = False
|
||||
except:
|
||||
continue
|
||||
if prompt_larger_than_model:
|
||||
messages = trim_messages(messages=messages, model=max_model)
|
||||
kwargs["messages"] = messages
|
||||
|
||||
kwargs["model"] = model
|
||||
try:
|
||||
if model in models_with_config:
|
||||
## Moderation check
|
||||
if config["model"][model].get("needs_moderation"):
|
||||
input = " ".join(message["content"] for message in messages)
|
||||
response = litellm.moderation(input=input)
|
||||
flagged = response["results"][0]["flagged"]
|
||||
if flagged:
|
||||
raise Exception("This response was flagged as inappropriate")
|
||||
|
||||
## Model-specific Error Handling
|
||||
error_handling = None
|
||||
if config["model"][model].get("error_handling"):
|
||||
error_handling = config["model"][model]["error_handling"]
|
||||
|
||||
try:
|
||||
response = litellm.completion(**kwargs)
|
||||
return response
|
||||
except Exception as e:
|
||||
exception_name = type(e).__name__
|
||||
fallback_model = None
|
||||
if error_handling and exception_name in error_handling:
|
||||
error_handler = error_handling[exception_name]
|
||||
# either switch model or api key
|
||||
fallback_model = error_handler.get("fallback_model", None)
|
||||
if fallback_model:
|
||||
kwargs["model"] = fallback_model
|
||||
return litellm.completion(**kwargs)
|
||||
raise e
|
||||
else:
|
||||
return litellm.completion(**kwargs)
|
||||
except Exception as e:
|
||||
if fallback_models:
|
||||
model = fallback_models.pop(0)
|
||||
return completion_with_fallbacks(
|
||||
model=model, messages=messages, fallbacks=fallback_models
|
||||
)
|
||||
raise e
|
||||
|
||||
|
||||
def completion_with_fallbacks(**kwargs):
|
||||
nested_kwargs = kwargs.pop("kwargs", {})
|
||||
response = None
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue