(fix) GCS bucket logger - apply truncate_standard_logging_payload_content to standard_logging_payload and ensure GCS flushes queue on fails (#7500)

* use truncate_standard_logging_payload_content

* update truncate_standard_logging_payload_content

* update dd logger

* update gcs async_send_batch

* fix code check

* test_datadog_payload_content_truncation

* fix code quality
This commit is contained in:
Ishaan Jaff 2025-01-01 20:21:01 -08:00 committed by GitHub
parent ec33fab922
commit 26a37c50c9
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 49 additions and 39 deletions

View file

@ -1,7 +1,10 @@
import io
import os
from re import M
import sys
from litellm.integrations.custom_logger import CustomLogger
sys.path.insert(0, os.path.abspath("../.."))
@ -392,6 +395,14 @@ async def test_datadog_payload_environment_variables():
pytest.fail(f"Test failed with exception: {str(e)}")
class TestDDLogger(CustomLogger):
def __init__(self):
self.standard_logging_object: Optional[StandardLoggingPayload] = None
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
self.standard_logging_object = kwargs["standard_logging_object"]
@pytest.mark.asyncio
async def test_datadog_payload_content_truncation():
"""
@ -399,15 +410,13 @@ async def test_datadog_payload_content_truncation():
DataDog has a limit of 1MB for the logged payload size.
"""
dd_logger = DataDogLogger()
dd_logger = TestDDLogger()
litellm.callbacks = [dd_logger]
# Create a standard payload with very long content
standard_payload = create_standard_logging_payload()
long_content = "x" * 80_000 # Create string longer than MAX_STR_LENGTH (10_000)
# Modify payload with long content
standard_payload["error_str"] = long_content
standard_payload["messages"] = [
# messages with long content
messages = [
{
"role": "user",
"content": [
@ -421,28 +430,26 @@ async def test_datadog_payload_content_truncation():
],
}
]
standard_payload["response"] = {"choices": [{"message": {"content": long_content}}]}
# Create the payload
dd_payload = dd_logger.create_datadog_logging_payload(
kwargs={"standard_logging_object": standard_payload},
response_obj=None,
start_time=datetime.now(),
end_time=datetime.now(),
await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
temperature=0.2,
mock_response=long_content,
)
print("dd_payload", json.dumps(dd_payload, indent=2))
await asyncio.sleep(2)
# Parse the message back to dict to verify truncation
message_dict = json.loads(dd_payload["message"])
# Create the payload
standard_logging_payload = dd_logger.standard_logging_object
print("standard_logging_payload", json.dumps(standard_logging_payload, indent=2))
# Verify truncation of fields
assert len(message_dict["error_str"]) < 10_100, "error_str not truncated correctly"
assert (
len(str(message_dict["messages"])) < 10_100
len(str(standard_logging_payload["messages"])) < 10_100
), "messages not truncated correctly"
assert (
len(str(message_dict["response"])) < 10_100
len(str(standard_logging_payload["response"])) < 10_100
), "response not truncated correctly"