feat(utils.py): support custom cost tracking per second

https://github.com/BerriAI/litellm/issues/1374
This commit is contained in:
Krrish Dholakia 2024-01-22 11:15:08 -08:00
parent 44f756efb5
commit 276a685a59
4 changed files with 74 additions and 31 deletions

View file

@ -12,15 +12,6 @@ formatter = logging.Formatter("\033[92m%(name)s - %(levelname)s\033[0m: %(messag
handler.setFormatter(formatter) handler.setFormatter(formatter)
def print_verbose(print_statement):
try:
if set_verbose:
print(print_statement) # noqa
except:
pass
verbose_proxy_logger = logging.getLogger("LiteLLM Proxy") verbose_proxy_logger = logging.getLogger("LiteLLM Proxy")
verbose_router_logger = logging.getLogger("LiteLLM Router") verbose_router_logger = logging.getLogger("LiteLLM Router")
verbose_logger = logging.getLogger("LiteLLM") verbose_logger = logging.getLogger("LiteLLM")
@ -29,3 +20,18 @@ verbose_logger = logging.getLogger("LiteLLM")
verbose_router_logger.addHandler(handler) verbose_router_logger.addHandler(handler)
verbose_proxy_logger.addHandler(handler) verbose_proxy_logger.addHandler(handler)
verbose_logger.addHandler(handler) verbose_logger.addHandler(handler)
def print_verbose(print_statement):
try:
if set_verbose:
print(print_statement) # noqa
verbose_logger.setLevel(level=logging.DEBUG) # set package log to debug
verbose_router_logger.setLevel(
level=logging.DEBUG
) # set router logs to debug
verbose_proxy_logger.setLevel(
level=logging.DEBUG
) # set proxy logs to debug
except:
pass

View file

@ -457,6 +457,8 @@ def completion(
### CUSTOM MODEL COST ### ### CUSTOM MODEL COST ###
input_cost_per_token = kwargs.get("input_cost_per_token", None) input_cost_per_token = kwargs.get("input_cost_per_token", None)
output_cost_per_token = kwargs.get("output_cost_per_token", None) output_cost_per_token = kwargs.get("output_cost_per_token", None)
input_cost_per_second = kwargs.get("input_cost_per_second", None)
output_cost_per_second = kwargs.get("output_cost_per_second", None)
### CUSTOM PROMPT TEMPLATE ### ### CUSTOM PROMPT TEMPLATE ###
initial_prompt_value = kwargs.get("initial_prompt_value", None) initial_prompt_value = kwargs.get("initial_prompt_value", None)
roles = kwargs.get("roles", None) roles = kwargs.get("roles", None)
@ -596,6 +598,19 @@ def completion(
} }
} }
) )
if (
input_cost_per_second is not None
): # time based pricing just needs cost in place
output_cost_per_second = output_cost_per_second or 0.0
litellm.register_model(
{
model: {
"input_cost_per_second": input_cost_per_second,
"output_cost_per_second": output_cost_per_second,
"litellm_provider": custom_llm_provider,
}
}
)
### BUILD CUSTOM PROMPT TEMPLATE -- IF GIVEN ### ### BUILD CUSTOM PROMPT TEMPLATE -- IF GIVEN ###
custom_prompt_dict = {} # type: ignore custom_prompt_dict = {} # type: ignore
if ( if (

View file

@ -1372,16 +1372,21 @@ def test_customprompt_together_ai():
def test_completion_sagemaker(): def test_completion_sagemaker():
try: try:
print("testing sagemaker")
litellm.set_verbose = True litellm.set_verbose = True
print("testing sagemaker")
response = completion( response = completion(
model="sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4", model="sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4",
messages=messages, messages=messages,
temperature=0.2, temperature=0.2,
max_tokens=80, max_tokens=80,
input_cost_per_second=0.000420,
) )
# Add any assertions here to check the response # Add any assertions here to check the response
print(response) print(response)
cost = completion_cost(completion_response=response)
assert (
cost > 0.0 and cost < 1.0
) # should never be > $1 for a single completion call
except Exception as e: except Exception as e:
pytest.fail(f"Error occurred: {e}") pytest.fail(f"Error occurred: {e}")

View file

@ -829,7 +829,7 @@ class Logging:
[f"-H '{k}: {v}'" for k, v in masked_headers.items()] [f"-H '{k}: {v}'" for k, v in masked_headers.items()]
) )
print_verbose(f"PRE-API-CALL ADDITIONAL ARGS: {additional_args}") verbose_logger.debug(f"PRE-API-CALL ADDITIONAL ARGS: {additional_args}")
curl_command = "\n\nPOST Request Sent from LiteLLM:\n" curl_command = "\n\nPOST Request Sent from LiteLLM:\n"
curl_command += "curl -X POST \\\n" curl_command += "curl -X POST \\\n"
@ -995,13 +995,10 @@ class Logging:
self.model_call_details["log_event_type"] = "post_api_call" self.model_call_details["log_event_type"] = "post_api_call"
# User Logging -> if you pass in a custom logging function # User Logging -> if you pass in a custom logging function
print_verbose( verbose_logger.info(
f"RAW RESPONSE:\n{self.model_call_details.get('original_response', self.model_call_details)}\n\n" f"RAW RESPONSE:\n{self.model_call_details.get('original_response', self.model_call_details)}\n\n"
) )
print_verbose( verbose_logger.debug(
f"Logging Details Post-API Call: logger_fn - {self.logger_fn} | callable(logger_fn) - {callable(self.logger_fn)}"
)
print_verbose(
f"Logging Details Post-API Call: LiteLLM Params: {self.model_call_details}" f"Logging Details Post-API Call: LiteLLM Params: {self.model_call_details}"
) )
if self.logger_fn and callable(self.logger_fn): if self.logger_fn and callable(self.logger_fn):
@ -2135,7 +2132,7 @@ def client(original_function):
litellm.cache.add_cache(result, *args, **kwargs) litellm.cache.add_cache(result, *args, **kwargs)
# LOG SUCCESS - handle streaming success logging in the _next_ object, remove `handle_success` once it's deprecated # LOG SUCCESS - handle streaming success logging in the _next_ object, remove `handle_success` once it's deprecated
print_verbose(f"Wrapper: Completed Call, calling success_handler") verbose_logger.info(f"Wrapper: Completed Call, calling success_handler")
threading.Thread( threading.Thread(
target=logging_obj.success_handler, args=(result, start_time, end_time) target=logging_obj.success_handler, args=(result, start_time, end_time)
).start() ).start()
@ -2807,7 +2804,11 @@ def token_counter(
def cost_per_token( def cost_per_token(
model="", prompt_tokens=0, completion_tokens=0, custom_llm_provider=None model="",
prompt_tokens=0,
completion_tokens=0,
response_time_ms=None,
custom_llm_provider=None,
): ):
""" """
Calculates the cost per token for a given model, prompt tokens, and completion tokens. Calculates the cost per token for a given model, prompt tokens, and completion tokens.
@ -2829,15 +2830,29 @@ def cost_per_token(
else: else:
model_with_provider = model model_with_provider = model
# see this https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models # see this https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
print_verbose(f"Looking up model={model} in model_cost_map") verbose_logger.debug(f"Looking up model={model} in model_cost_map")
if model in model_cost_ref: if model in model_cost_ref:
if (
model_cost_ref[model].get("input_cost_per_token", None) is not None
and model_cost_ref[model].get("output_cost_per_token", None) is not None
):
## COST PER TOKEN ##
prompt_tokens_cost_usd_dollar = ( prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
) )
completion_tokens_cost_usd_dollar = ( completion_tokens_cost_usd_dollar = (
model_cost_ref[model]["output_cost_per_token"] * completion_tokens model_cost_ref[model]["output_cost_per_token"] * completion_tokens
) )
elif (
model_cost_ref[model].get("input_cost_per_second", None) is not None
and response_time_ms is not None
):
## COST PER SECOND ##
prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_second"] * response_time_ms / 1000
)
completion_tokens_cost_usd_dollar = 0.0
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif model_with_provider in model_cost_ref: elif model_with_provider in model_cost_ref:
print_verbose(f"Looking up model={model_with_provider} in model_cost_map") print_verbose(f"Looking up model={model_with_provider} in model_cost_map")
@ -2939,6 +2954,7 @@ def completion_cost(
completion_tokens = completion_response.get("usage", {}).get( completion_tokens = completion_response.get("usage", {}).get(
"completion_tokens", 0 "completion_tokens", 0
) )
total_time = completion_response.get("_response_ms", 0)
model = ( model = (
model or completion_response["model"] model or completion_response["model"]
) # check if user passed an override for model, if it's none check completion_response['model'] ) # check if user passed an override for model, if it's none check completion_response['model']
@ -2976,6 +2992,7 @@ def completion_cost(
prompt_tokens=prompt_tokens, prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens, completion_tokens=completion_tokens,
custom_llm_provider=custom_llm_provider, custom_llm_provider=custom_llm_provider,
response_time_ms=total_time,
) )
return prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar return prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
except Exception as e: except Exception as e:
@ -3006,9 +3023,7 @@ def register_model(model_cost: Union[str, dict]):
for key, value in loaded_model_cost.items(): for key, value in loaded_model_cost.items():
## override / add new keys to the existing model cost dictionary ## override / add new keys to the existing model cost dictionary
if key in litellm.model_cost: litellm.model_cost.setdefault(key, {}).update(value)
for k, v in loaded_model_cost[key].items():
litellm.model_cost[key][k] = v
# add new model names to provider lists # add new model names to provider lists
if value.get("litellm_provider") == "openai": if value.get("litellm_provider") == "openai":
if key not in litellm.open_ai_chat_completion_models: if key not in litellm.open_ai_chat_completion_models:
@ -3301,11 +3316,13 @@ def get_optional_params(
) )
def _check_valid_arg(supported_params): def _check_valid_arg(supported_params):
print_verbose( verbose_logger.debug(
f"\nLiteLLM completion() model= {model}; provider = {custom_llm_provider}" f"\nLiteLLM completion() model= {model}; provider = {custom_llm_provider}"
) )
print_verbose(f"\nLiteLLM: Params passed to completion() {passed_params}") verbose_logger.debug(
print_verbose( f"\nLiteLLM: Params passed to completion() {passed_params}"
)
verbose_logger.debug(
f"\nLiteLLM: Non-Default params passed to completion() {non_default_params}" f"\nLiteLLM: Non-Default params passed to completion() {non_default_params}"
) )
unsupported_params = {} unsupported_params = {}