add linting

This commit is contained in:
ishaan-jaff 2023-08-18 11:05:05 -07:00
parent fa108c998d
commit 2c7ffb7c75
40 changed files with 3110 additions and 1709 deletions

View file

@ -3,31 +3,94 @@
import dotenv, os
import requests
dotenv.load_dotenv() # Loading env variables using dotenv
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback
import datetime, subprocess, sys
model_cost = {
"gpt-3.5-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-35-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002}, # azure model name
"gpt-3.5-turbo-0613": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-3.5-turbo-0301": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-3.5-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
"gpt-35-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004}, # azure model name
"gpt-3.5-turbo-16k-0613": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
"gpt-4": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
"gpt-4-0613": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
"gpt-4-32k": {"max_tokens": 8000, "input_cost_per_token": 0.00006, "output_cost_per_token": 0.00012},
"claude-instant-1": {"max_tokens": 100000, "input_cost_per_token": 0.00000163, "output_cost_per_token": 0.00000551},
"claude-2": {"max_tokens": 100000, "input_cost_per_token": 0.00001102, "output_cost_per_token": 0.00003268},
"text-bison-001": {"max_tokens": 8192, "input_cost_per_token": 0.000004, "output_cost_per_token": 0.000004},
"chat-bison-001": {"max_tokens": 4096, "input_cost_per_token": 0.000002, "output_cost_per_token": 0.000002},
"command-nightly": {"max_tokens": 4096, "input_cost_per_token": 0.000015, "output_cost_per_token": 0.000015},
"gpt-3.5-turbo": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
},
"gpt-35-turbo": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
}, # azure model name
"gpt-3.5-turbo-0613": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
},
"gpt-3.5-turbo-0301": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
},
"gpt-3.5-turbo-16k": {
"max_tokens": 16000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000004,
},
"gpt-35-turbo-16k": {
"max_tokens": 16000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000004,
}, # azure model name
"gpt-3.5-turbo-16k-0613": {
"max_tokens": 16000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000004,
},
"gpt-4": {
"max_tokens": 8000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.00006,
},
"gpt-4-0613": {
"max_tokens": 8000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.00006,
},
"gpt-4-32k": {
"max_tokens": 8000,
"input_cost_per_token": 0.00006,
"output_cost_per_token": 0.00012,
},
"claude-instant-1": {
"max_tokens": 100000,
"input_cost_per_token": 0.00000163,
"output_cost_per_token": 0.00000551,
},
"claude-2": {
"max_tokens": 100000,
"input_cost_per_token": 0.00001102,
"output_cost_per_token": 0.00003268,
},
"text-bison-001": {
"max_tokens": 8192,
"input_cost_per_token": 0.000004,
"output_cost_per_token": 0.000004,
},
"chat-bison-001": {
"max_tokens": 4096,
"input_cost_per_token": 0.000002,
"output_cost_per_token": 0.000002,
},
"command-nightly": {
"max_tokens": 4096,
"input_cost_per_token": 0.000015,
"output_cost_per_token": 0.000015,
},
}
class Supabase:
# Class variables or attributes
supabase_table_name = "request_logs"
def __init__(self):
# Instance variables
self.supabase_url = os.getenv("SUPABASE_URL")
@ -35,9 +98,11 @@ class Supabase:
try:
import supabase
except ImportError:
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'supabase'])
subprocess.check_call([sys.executable, "-m", "pip", "install", "supabase"])
import supabase
self.supabase_client = supabase.create_client(self.supabase_url, self.supabase_key)
self.supabase_client = supabase.create_client(
self.supabase_url, self.supabase_key
)
def price_calculator(self, model, response_obj, start_time, end_time):
# try and find if the model is in the model_cost map
@ -45,17 +110,23 @@ class Supabase:
prompt_tokens_cost_usd_dollar = 0
completion_tokens_cost_usd_dollar = 0
if model in model_cost:
prompt_tokens_cost_usd_dollar = model_cost[model]["input_cost_per_token"] * response_obj["usage"]["prompt_tokens"]
completion_tokens_cost_usd_dollar = model_cost[model]["output_cost_per_token"] * response_obj["usage"]["completion_tokens"]
elif "replicate" in model:
prompt_tokens_cost_usd_dollar = (
model_cost[model]["input_cost_per_token"]
* response_obj["usage"]["prompt_tokens"]
)
completion_tokens_cost_usd_dollar = (
model_cost[model]["output_cost_per_token"]
* response_obj["usage"]["completion_tokens"]
)
elif "replicate" in model:
# replicate models are charged based on time
# llama 2 runs on an nvidia a100 which costs $0.0032 per second - https://replicate.com/replicate/llama-2-70b-chat
model_run_time = end_time - start_time # assuming time in seconds
model_run_time = end_time - start_time # assuming time in seconds
cost_usd_dollar = model_run_time * 0.0032
prompt_tokens_cost_usd_dollar = cost_usd_dollar / 2
completion_tokens_cost_usd_dollar = cost_usd_dollar / 2
else:
# calculate average input cost
# calculate average input cost
input_cost_sum = 0
output_cost_sum = 0
for model in model_cost:
@ -63,41 +134,75 @@ class Supabase:
output_cost_sum += model_cost[model]["output_cost_per_token"]
avg_input_cost = input_cost_sum / len(model_cost.keys())
avg_output_cost = output_cost_sum / len(model_cost.keys())
prompt_tokens_cost_usd_dollar = model_cost[model]["input_cost_per_token"] * response_obj["usage"]["prompt_tokens"]
completion_tokens_cost_usd_dollar = model_cost[model]["output_cost_per_token"] * response_obj["usage"]["completion_tokens"]
prompt_tokens_cost_usd_dollar = (
model_cost[model]["input_cost_per_token"]
* response_obj["usage"]["prompt_tokens"]
)
completion_tokens_cost_usd_dollar = (
model_cost[model]["output_cost_per_token"]
* response_obj["usage"]["completion_tokens"]
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
def log_event(self, model, messages, end_user, response_obj, start_time, end_time, print_verbose):
def log_event(
self,
model,
messages,
end_user,
response_obj,
start_time,
end_time,
print_verbose,
):
try:
print_verbose(f"Supabase Logging - Enters logging function for model {model}, response_obj: {response_obj}")
print_verbose(
f"Supabase Logging - Enters logging function for model {model}, response_obj: {response_obj}"
)
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = self.price_calculator(model, response_obj, start_time, end_time)
total_cost = prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
(
prompt_tokens_cost_usd_dollar,
completion_tokens_cost_usd_dollar,
) = self.price_calculator(model, response_obj, start_time, end_time)
total_cost = (
prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
)
response_time = (end_time-start_time).total_seconds()
response_time = (end_time - start_time).total_seconds()
if "choices" in response_obj:
supabase_data_obj = {
"response_time": response_time,
"model": response_obj["model"],
"total_cost": total_cost,
"total_cost": total_cost,
"messages": messages,
"response": response_obj['choices'][0]['message']['content'],
"end_user": end_user
"response": response_obj["choices"][0]["message"]["content"],
"end_user": end_user,
}
print_verbose(f"Supabase Logging - final data object: {supabase_data_obj}")
data, count = self.supabase_client.table(self.supabase_table_name).insert(supabase_data_obj).execute()
print_verbose(
f"Supabase Logging - final data object: {supabase_data_obj}"
)
data, count = (
self.supabase_client.table(self.supabase_table_name)
.insert(supabase_data_obj)
.execute()
)
elif "error" in response_obj:
supabase_data_obj = {
"response_time": response_time,
"model": response_obj["model"],
"total_cost": total_cost,
"total_cost": total_cost,
"messages": messages,
"error": response_obj['error'],
"end_user": end_user
"error": response_obj["error"],
"end_user": end_user,
}
print_verbose(f"Supabase Logging - final data object: {supabase_data_obj}")
data, count = self.supabase_client.table(self.supabase_table_name).insert(supabase_data_obj).execute()
print_verbose(
f"Supabase Logging - final data object: {supabase_data_obj}"
)
data, count = (
self.supabase_client.table(self.supabase_table_name)
.insert(supabase_data_obj)
.execute()
)
except:
# traceback.print_exc()
print_verbose(f"Supabase Logging Error - {traceback.format_exc()}")