add linting

This commit is contained in:
ishaan-jaff 2023-08-18 11:05:05 -07:00
parent fa108c998d
commit 2c7ffb7c75
40 changed files with 3110 additions and 1709 deletions

View file

@ -1,8 +1,9 @@
import threading
success_callback = []
failure_callback = []
set_verbose=False
telemetry=True
set_verbose = False
telemetry = True
max_tokens = 256 # OpenAI Defaults
retry = True
api_key = None
@ -19,33 +20,99 @@ caching = False
hugging_api_token = None
togetherai_api_key = None
model_cost = {
"gpt-3.5-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-35-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002}, # azure model name
"gpt-3.5-turbo-0613": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-3.5-turbo-0301": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-3.5-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
"gpt-35-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004}, # azure model name
"gpt-3.5-turbo-16k-0613": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
"gpt-4": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
"gpt-4-0613": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
"gpt-4-32k": {"max_tokens": 8000, "input_cost_per_token": 0.00006, "output_cost_per_token": 0.00012},
"claude-instant-1": {"max_tokens": 100000, "input_cost_per_token": 0.00000163, "output_cost_per_token": 0.00000551},
"claude-2": {"max_tokens": 100000, "input_cost_per_token": 0.00001102, "output_cost_per_token": 0.00003268},
"text-bison-001": {"max_tokens": 8192, "input_cost_per_token": 0.000004, "output_cost_per_token": 0.000004},
"chat-bison-001": {"max_tokens": 4096, "input_cost_per_token": 0.000002, "output_cost_per_token": 0.000002},
"command-nightly": {"max_tokens": 4096, "input_cost_per_token": 0.000015, "output_cost_per_token": 0.000015},
"gpt-3.5-turbo": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
},
"gpt-35-turbo": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
}, # azure model name
"gpt-3.5-turbo-0613": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
},
"gpt-3.5-turbo-0301": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
},
"gpt-3.5-turbo-16k": {
"max_tokens": 16000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000004,
},
"gpt-35-turbo-16k": {
"max_tokens": 16000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000004,
}, # azure model name
"gpt-3.5-turbo-16k-0613": {
"max_tokens": 16000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000004,
},
"gpt-4": {
"max_tokens": 8000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.00006,
},
"gpt-4-0613": {
"max_tokens": 8000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.00006,
},
"gpt-4-32k": {
"max_tokens": 8000,
"input_cost_per_token": 0.00006,
"output_cost_per_token": 0.00012,
},
"claude-instant-1": {
"max_tokens": 100000,
"input_cost_per_token": 0.00000163,
"output_cost_per_token": 0.00000551,
},
"claude-2": {
"max_tokens": 100000,
"input_cost_per_token": 0.00001102,
"output_cost_per_token": 0.00003268,
},
"text-bison-001": {
"max_tokens": 8192,
"input_cost_per_token": 0.000004,
"output_cost_per_token": 0.000004,
},
"chat-bison-001": {
"max_tokens": 4096,
"input_cost_per_token": 0.000002,
"output_cost_per_token": 0.000002,
},
"command-nightly": {
"max_tokens": 4096,
"input_cost_per_token": 0.000015,
"output_cost_per_token": 0.000015,
},
}
####### THREAD-SPECIFIC DATA ###################
class MyLocal(threading.local):
def __init__(self):
self.user = "Hello World"
_thread_context = MyLocal()
def identify(event_details):
# Store user in thread local data
if "user" in event_details:
_thread_context.user = event_details["user"]
####### ADDITIONAL PARAMS ################### configurable params if you use proxy models like Helicone, map spend to org id, etc.
api_base = None
headers = None
@ -66,50 +133,38 @@ open_ai_chat_completion_models = [
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
]
open_ai_text_completion_models = [
'text-davinci-003'
]
open_ai_text_completion_models = ["text-davinci-003"]
cohere_models = [
'command-nightly',
"command-nightly",
"command",
"command-light",
"command-medium-beta",
"command-xlarge-beta"
"command-xlarge-beta",
]
anthropic_models = [
"claude-2",
"claude-instant-1",
"claude-instant-1.2"
]
anthropic_models = ["claude-2", "claude-instant-1", "claude-instant-1.2"]
replicate_models = [
"replicate/"
] # placeholder, to make sure we accept any replicate model in our model_list
openrouter_models = [
'google/palm-2-codechat-bison',
'google/palm-2-chat-bison',
'openai/gpt-3.5-turbo',
'openai/gpt-3.5-turbo-16k',
'openai/gpt-4-32k',
'anthropic/claude-2',
'anthropic/claude-instant-v1',
'meta-llama/llama-2-13b-chat',
'meta-llama/llama-2-70b-chat'
"google/palm-2-codechat-bison",
"google/palm-2-chat-bison",
"openai/gpt-3.5-turbo",
"openai/gpt-3.5-turbo-16k",
"openai/gpt-4-32k",
"anthropic/claude-2",
"anthropic/claude-instant-v1",
"meta-llama/llama-2-13b-chat",
"meta-llama/llama-2-70b-chat",
]
vertex_chat_models = [
"chat-bison",
"chat-bison@001"
]
vertex_chat_models = ["chat-bison", "chat-bison@001"]
vertex_text_models = [
"text-bison",
"text-bison@001"
]
vertex_text_models = ["text-bison", "text-bison@001"]
huggingface_models = [
"meta-llama/Llama-2-7b-hf",
@ -126,23 +181,54 @@ huggingface_models = [
"meta-llama/Llama-2-70b-chat",
] # these have been tested on extensively. But by default all text2text-generation and text-generation models are supported by liteLLM. - https://docs.litellm.ai/docs/completion/supported
ai21_models = [
"j2-ultra",
"j2-mid",
"j2-light"
ai21_models = ["j2-ultra", "j2-mid", "j2-light"]
model_list = (
open_ai_chat_completion_models
+ open_ai_text_completion_models
+ cohere_models
+ anthropic_models
+ replicate_models
+ openrouter_models
+ huggingface_models
+ vertex_chat_models
+ vertex_text_models
+ ai21_models
)
provider_list = [
"openai",
"cohere",
"anthropic",
"replicate",
"huggingface",
"together_ai",
"openrouter",
"vertex_ai",
"ai21",
]
model_list = open_ai_chat_completion_models + open_ai_text_completion_models + cohere_models + anthropic_models + replicate_models + openrouter_models + huggingface_models + vertex_chat_models + vertex_text_models + ai21_models
provider_list = ["openai", "cohere", "anthropic", "replicate", "huggingface", "together_ai", "openrouter", "vertex_ai", "ai21"]
####### EMBEDDING MODELS ###################
open_ai_embedding_models = [
'text-embedding-ada-002'
]
open_ai_embedding_models = ["text-embedding-ada-002"]
from .timeout import timeout
from .testing import *
from .utils import client, logging, exception_type, get_optional_params, modify_integration, token_counter, cost_per_token, completion_cost, get_litellm_params
from .utils import (
client,
logging,
exception_type,
get_optional_params,
modify_integration,
token_counter,
cost_per_token,
completion_cost,
get_litellm_params,
)
from .main import * # Import all the symbols from main.py
from .integrations import *
from openai.error import AuthenticationError, InvalidRequestError, RateLimitError, ServiceUnavailableError, OpenAIError
from openai.error import (
AuthenticationError,
InvalidRequestError,
RateLimitError,
ServiceUnavailableError,
OpenAIError,
)

View file

@ -1,12 +1,21 @@
## LiteLLM versions of the OpenAI Exception Types
from openai.error import AuthenticationError, InvalidRequestError, RateLimitError, ServiceUnavailableError, OpenAIError
from openai.error import (
AuthenticationError,
InvalidRequestError,
RateLimitError,
ServiceUnavailableError,
OpenAIError,
)
class AuthenticationError(AuthenticationError):
def __init__(self, message, llm_provider):
self.status_code = 401
self.message = message
self.llm_provider = llm_provider
super().__init__(self.message) # Call the base class constructor with the parameters it needs
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class InvalidRequestError(InvalidRequestError):
@ -15,7 +24,9 @@ class InvalidRequestError(InvalidRequestError):
self.message = message
self.model = model
self.llm_provider = llm_provider
super().__init__(self.message, f"{self.model}") # Call the base class constructor with the parameters it needs
super().__init__(
self.message, f"{self.model}"
) # Call the base class constructor with the parameters it needs
class RateLimitError(RateLimitError):
@ -23,21 +34,29 @@ class RateLimitError(RateLimitError):
self.status_code = 429
self.message = message
self.llm_provider = llm_provider
super().__init__(self.message) # Call the base class constructor with the parameters it needs
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class ServiceUnavailableError(ServiceUnavailableError):
def __init__(self, message, llm_provider):
self.status_code = 500
self.message = message
self.llm_provider = llm_provider
super().__init__(self.message) # Call the base class constructor with the parameters it needs
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class OpenAIError(OpenAIError):
def __init__(self, original_exception):
self.status_code = original_exception.http_status
super().__init__(http_body=original_exception.http_body,
super().__init__(
http_body=original_exception.http_body,
http_status=original_exception.http_status,
json_body=original_exception.json_body,
headers=original_exception.headers,
code=original_exception.code)
code=original_exception.code,
)
self.llm_provider = "openai"

View file

@ -2,28 +2,90 @@
# On success + failure, log events to aispend.io
import dotenv, os
import requests
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback
import datetime
model_cost = {
"gpt-3.5-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-35-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002}, # azure model name
"gpt-3.5-turbo-0613": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-3.5-turbo-0301": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-3.5-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
"gpt-35-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004}, # azure model name
"gpt-3.5-turbo-16k-0613": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
"gpt-4": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
"gpt-4-0613": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
"gpt-4-32k": {"max_tokens": 8000, "input_cost_per_token": 0.00006, "output_cost_per_token": 0.00012},
"claude-instant-1": {"max_tokens": 100000, "input_cost_per_token": 0.00000163, "output_cost_per_token": 0.00000551},
"claude-2": {"max_tokens": 100000, "input_cost_per_token": 0.00001102, "output_cost_per_token": 0.00003268},
"text-bison-001": {"max_tokens": 8192, "input_cost_per_token": 0.000004, "output_cost_per_token": 0.000004},
"chat-bison-001": {"max_tokens": 4096, "input_cost_per_token": 0.000002, "output_cost_per_token": 0.000002},
"command-nightly": {"max_tokens": 4096, "input_cost_per_token": 0.000015, "output_cost_per_token": 0.000015},
"gpt-3.5-turbo": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
},
"gpt-35-turbo": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
}, # azure model name
"gpt-3.5-turbo-0613": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
},
"gpt-3.5-turbo-0301": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
},
"gpt-3.5-turbo-16k": {
"max_tokens": 16000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000004,
},
"gpt-35-turbo-16k": {
"max_tokens": 16000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000004,
}, # azure model name
"gpt-3.5-turbo-16k-0613": {
"max_tokens": 16000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000004,
},
"gpt-4": {
"max_tokens": 8000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.00006,
},
"gpt-4-0613": {
"max_tokens": 8000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.00006,
},
"gpt-4-32k": {
"max_tokens": 8000,
"input_cost_per_token": 0.00006,
"output_cost_per_token": 0.00012,
},
"claude-instant-1": {
"max_tokens": 100000,
"input_cost_per_token": 0.00000163,
"output_cost_per_token": 0.00000551,
},
"claude-2": {
"max_tokens": 100000,
"input_cost_per_token": 0.00001102,
"output_cost_per_token": 0.00003268,
},
"text-bison-001": {
"max_tokens": 8192,
"input_cost_per_token": 0.000004,
"output_cost_per_token": 0.000004,
},
"chat-bison-001": {
"max_tokens": 4096,
"input_cost_per_token": 0.000002,
"output_cost_per_token": 0.000002,
},
"command-nightly": {
"max_tokens": 4096,
"input_cost_per_token": 0.000015,
"output_cost_per_token": 0.000015,
},
}
class AISpendLogger:
# Class variables or attributes
def __init__(self):
@ -37,8 +99,14 @@ class AISpendLogger:
prompt_tokens_cost_usd_dollar = 0
completion_tokens_cost_usd_dollar = 0
if model in model_cost:
prompt_tokens_cost_usd_dollar = model_cost[model]["input_cost_per_token"] * response_obj["usage"]["prompt_tokens"]
completion_tokens_cost_usd_dollar = model_cost[model]["output_cost_per_token"] * response_obj["usage"]["completion_tokens"]
prompt_tokens_cost_usd_dollar = (
model_cost[model]["input_cost_per_token"]
* response_obj["usage"]["prompt_tokens"]
)
completion_tokens_cost_usd_dollar = (
model_cost[model]["output_cost_per_token"]
* response_obj["usage"]["completion_tokens"]
)
elif "replicate" in model:
# replicate models are charged based on time
# llama 2 runs on an nvidia a100 which costs $0.0032 per second - https://replicate.com/replicate/llama-2-70b-chat
@ -55,27 +123,41 @@ class AISpendLogger:
output_cost_sum += model_cost[model]["output_cost_per_token"]
avg_input_cost = input_cost_sum / len(model_cost.keys())
avg_output_cost = output_cost_sum / len(model_cost.keys())
prompt_tokens_cost_usd_dollar = model_cost[model]["input_cost_per_token"] * response_obj["usage"]["prompt_tokens"]
completion_tokens_cost_usd_dollar = model_cost[model]["output_cost_per_token"] * response_obj["usage"]["completion_tokens"]
prompt_tokens_cost_usd_dollar = (
model_cost[model]["input_cost_per_token"]
* response_obj["usage"]["prompt_tokens"]
)
completion_tokens_cost_usd_dollar = (
model_cost[model]["output_cost_per_token"]
* response_obj["usage"]["completion_tokens"]
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
def log_event(self, model, response_obj, start_time, end_time, print_verbose):
# Method definition
try:
print_verbose(f"AISpend Logging - Enters logging function for model {model}")
print_verbose(
f"AISpend Logging - Enters logging function for model {model}"
)
url = f"https://aispend.io/api/v1/accounts/{self.account_id}/data"
headers = {
'Authorization': f'Bearer {self.api_key}',
'Content-Type': 'application/json'
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
response_timestamp = datetime.datetime.fromtimestamp(int(response_obj["created"])).strftime('%Y-%m-%d')
response_timestamp = datetime.datetime.fromtimestamp(
int(response_obj["created"])
).strftime("%Y-%m-%d")
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = self.price_calculator(model, response_obj, start_time, end_time)
(
prompt_tokens_cost_usd_dollar,
completion_tokens_cost_usd_dollar,
) = self.price_calculator(model, response_obj, start_time, end_time)
prompt_tokens_cost_usd_cent = prompt_tokens_cost_usd_dollar * 100
completion_tokens_cost_usd_cent = completion_tokens_cost_usd_dollar * 100
data = [{
data = [
{
"requests": 1,
"requests_context": 1,
"context_tokens": response_obj["usage"]["prompt_tokens"],
@ -84,8 +166,9 @@ class AISpendLogger:
"recorded_date": response_timestamp,
"model_id": response_obj["model"],
"generated_tokens_cost_usd_cent": prompt_tokens_cost_usd_cent,
"context_tokens_cost_usd_cent": completion_tokens_cost_usd_cent
}]
"context_tokens_cost_usd_cent": completion_tokens_cost_usd_cent,
}
]
print_verbose(f"AISpend Logging - final data object: {data}")
except:

View file

@ -2,28 +2,90 @@
# On success + failure, log events to aispend.io
import dotenv, os
import requests
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback
import datetime
model_cost = {
"gpt-3.5-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-35-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002}, # azure model name
"gpt-3.5-turbo-0613": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-3.5-turbo-0301": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-3.5-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
"gpt-35-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004}, # azure model name
"gpt-3.5-turbo-16k-0613": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
"gpt-4": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
"gpt-4-0613": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
"gpt-4-32k": {"max_tokens": 8000, "input_cost_per_token": 0.00006, "output_cost_per_token": 0.00012},
"claude-instant-1": {"max_tokens": 100000, "input_cost_per_token": 0.00000163, "output_cost_per_token": 0.00000551},
"claude-2": {"max_tokens": 100000, "input_cost_per_token": 0.00001102, "output_cost_per_token": 0.00003268},
"text-bison-001": {"max_tokens": 8192, "input_cost_per_token": 0.000004, "output_cost_per_token": 0.000004},
"chat-bison-001": {"max_tokens": 4096, "input_cost_per_token": 0.000002, "output_cost_per_token": 0.000002},
"command-nightly": {"max_tokens": 4096, "input_cost_per_token": 0.000015, "output_cost_per_token": 0.000015},
"gpt-3.5-turbo": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
},
"gpt-35-turbo": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
}, # azure model name
"gpt-3.5-turbo-0613": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
},
"gpt-3.5-turbo-0301": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
},
"gpt-3.5-turbo-16k": {
"max_tokens": 16000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000004,
},
"gpt-35-turbo-16k": {
"max_tokens": 16000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000004,
}, # azure model name
"gpt-3.5-turbo-16k-0613": {
"max_tokens": 16000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000004,
},
"gpt-4": {
"max_tokens": 8000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.00006,
},
"gpt-4-0613": {
"max_tokens": 8000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.00006,
},
"gpt-4-32k": {
"max_tokens": 8000,
"input_cost_per_token": 0.00006,
"output_cost_per_token": 0.00012,
},
"claude-instant-1": {
"max_tokens": 100000,
"input_cost_per_token": 0.00000163,
"output_cost_per_token": 0.00000551,
},
"claude-2": {
"max_tokens": 100000,
"input_cost_per_token": 0.00001102,
"output_cost_per_token": 0.00003268,
},
"text-bison-001": {
"max_tokens": 8192,
"input_cost_per_token": 0.000004,
"output_cost_per_token": 0.000004,
},
"chat-bison-001": {
"max_tokens": 4096,
"input_cost_per_token": 0.000002,
"output_cost_per_token": 0.000002,
},
"command-nightly": {
"max_tokens": 4096,
"input_cost_per_token": 0.000015,
"output_cost_per_token": 0.000015,
},
}
class BerriSpendLogger:
# Class variables or attributes
def __init__(self):
@ -36,8 +98,14 @@ class BerriSpendLogger:
prompt_tokens_cost_usd_dollar = 0
completion_tokens_cost_usd_dollar = 0
if model in model_cost:
prompt_tokens_cost_usd_dollar = model_cost[model]["input_cost_per_token"] * response_obj["usage"]["prompt_tokens"]
completion_tokens_cost_usd_dollar = model_cost[model]["output_cost_per_token"] * response_obj["usage"]["completion_tokens"]
prompt_tokens_cost_usd_dollar = (
model_cost[model]["input_cost_per_token"]
* response_obj["usage"]["prompt_tokens"]
)
completion_tokens_cost_usd_dollar = (
model_cost[model]["output_cost_per_token"]
* response_obj["usage"]["completion_tokens"]
)
elif "replicate" in model:
# replicate models are charged based on time
# llama 2 runs on an nvidia a100 which costs $0.0032 per second - https://replicate.com/replicate/llama-2-70b-chat
@ -54,42 +122,59 @@ class BerriSpendLogger:
output_cost_sum += model_cost[model]["output_cost_per_token"]
avg_input_cost = input_cost_sum / len(model_cost.keys())
avg_output_cost = output_cost_sum / len(model_cost.keys())
prompt_tokens_cost_usd_dollar = model_cost[model]["input_cost_per_token"] * response_obj["usage"]["prompt_tokens"]
completion_tokens_cost_usd_dollar = model_cost[model]["output_cost_per_token"] * response_obj["usage"]["completion_tokens"]
prompt_tokens_cost_usd_dollar = (
model_cost[model]["input_cost_per_token"]
* response_obj["usage"]["prompt_tokens"]
)
completion_tokens_cost_usd_dollar = (
model_cost[model]["output_cost_per_token"]
* response_obj["usage"]["completion_tokens"]
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
def log_event(self, model, messages, response_obj, start_time, end_time, print_verbose):
def log_event(
self, model, messages, response_obj, start_time, end_time, print_verbose
):
# Method definition
try:
print_verbose(f"BerriSpend Logging - Enters logging function for model {model}")
print_verbose(
f"BerriSpend Logging - Enters logging function for model {model}"
)
url = f"https://berrispend.berri.ai/spend"
headers = {
'Content-Type': 'application/json'
}
headers = {"Content-Type": "application/json"}
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = self.price_calculator(model, response_obj, start_time, end_time)
total_cost = prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
(
prompt_tokens_cost_usd_dollar,
completion_tokens_cost_usd_dollar,
) = self.price_calculator(model, response_obj, start_time, end_time)
total_cost = (
prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
)
response_time = (end_time-start_time).total_seconds()
response_time = (end_time - start_time).total_seconds()
if "response" in response_obj:
data = [{
data = [
{
"response_time": response_time,
"model_id": response_obj["model"],
"total_cost": total_cost,
"messages": messages,
"response": response_obj['choices'][0]['message']['content'],
"account_id": self.account_id
}]
"response": response_obj["choices"][0]["message"]["content"],
"account_id": self.account_id,
}
]
elif "error" in response_obj:
data = [{
data = [
{
"response_time": response_time,
"model_id": response_obj["model"],
"total_cost": total_cost,
"messages": messages,
"error": response_obj['error'],
"account_id": self.account_id
}]
"error": response_obj["error"],
"account_id": self.account_id,
}
]
print_verbose(f"BerriSpend Logging - final data object: {data}")
response = requests.post(url, headers=headers, json=data)

View file

@ -2,18 +2,23 @@
# On success, logs events to Helicone
import dotenv, os
import requests
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback
class HeliconeLogger:
# Class variables or attributes
helicone_model_list = ["gpt", "claude"]
def __init__(self):
# Instance variables
self.provider_url = "https://api.openai.com/v1"
self.key = os.getenv('HELICONE_API_KEY')
self.key = os.getenv("HELICONE_API_KEY")
def claude_mapping(self, model, messages, response_obj):
from anthropic import HUMAN_PROMPT, AI_PROMPT
prompt = f"{HUMAN_PROMPT}"
for message in messages:
if "role" in message:
@ -26,46 +31,82 @@ class HeliconeLogger:
prompt += f"{AI_PROMPT}"
claude_provider_request = {"model": model, "prompt": prompt}
claude_response_obj = {"completion": response_obj['choices'][0]['message']['content'], "model": model, "stop_reason": "stop_sequence"}
claude_response_obj = {
"completion": response_obj["choices"][0]["message"]["content"],
"model": model,
"stop_reason": "stop_sequence",
}
return claude_provider_request, claude_response_obj
def log_success(self, model, messages, response_obj, start_time, end_time, print_verbose):
def log_success(
self, model, messages, response_obj, start_time, end_time, print_verbose
):
# Method definition
try:
print_verbose(f"Helicone Logging - Enters logging function for model {model}")
model = model if any(accepted_model in model for accepted_model in self.helicone_model_list) else "gpt-3.5-turbo"
print_verbose(
f"Helicone Logging - Enters logging function for model {model}"
)
model = (
model
if any(
accepted_model in model
for accepted_model in self.helicone_model_list
)
else "gpt-3.5-turbo"
)
provider_request = {"model": model, "messages": messages}
if "claude" in model:
provider_request, response_obj = self.claude_mapping(model=model, messages=messages, response_obj=response_obj)
provider_request, response_obj = self.claude_mapping(
model=model, messages=messages, response_obj=response_obj
)
providerResponse = {
"json": response_obj,
"headers": {"openai-version": "2020-10-01"},
"status": 200
"status": 200,
}
# Code to be executed
url = "https://api.hconeai.com/oai/v1/log"
headers = {
'Authorization': f'Bearer {self.key}',
'Content-Type': 'application/json'
"Authorization": f"Bearer {self.key}",
"Content-Type": "application/json",
}
start_time_seconds = int(start_time.timestamp())
start_time_milliseconds = int((start_time.timestamp() - start_time_seconds) * 1000)
start_time_milliseconds = int(
(start_time.timestamp() - start_time_seconds) * 1000
)
end_time_seconds = int(end_time.timestamp())
end_time_milliseconds = int((end_time.timestamp() - end_time_seconds) * 1000)
end_time_milliseconds = int(
(end_time.timestamp() - end_time_seconds) * 1000
)
data = {
"providerRequest": {"url": self.provider_url, "json": provider_request, "meta": {"Helicone-Auth": f"Bearer {self.key}"}},
"providerRequest": {
"url": self.provider_url,
"json": provider_request,
"meta": {"Helicone-Auth": f"Bearer {self.key}"},
},
"providerResponse": providerResponse,
"timing": {"startTime": {"seconds": start_time_seconds, "milliseconds": start_time_milliseconds}, "endTime": {"seconds": end_time_seconds, "milliseconds": end_time_milliseconds}} # {"seconds": .., "milliseconds": ..}
"timing": {
"startTime": {
"seconds": start_time_seconds,
"milliseconds": start_time_milliseconds,
},
"endTime": {
"seconds": end_time_seconds,
"milliseconds": end_time_milliseconds,
},
}, # {"seconds": .., "milliseconds": ..}
}
response = requests.post(url, headers=headers, json=data)
if response.status_code == 200:
print_verbose("Helicone Logging - Success!")
else:
print_verbose(f"Helicone Logging - Error Request was not successful. Status Code: {response.status_code}")
print_verbose(
f"Helicone Logging - Error Request was not successful. Status Code: {response.status_code}"
)
print_verbose(f"Helicone Logging - Error {response.text}")
except:
# traceback.print_exc()

View file

@ -3,31 +3,94 @@
import dotenv, os
import requests
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback
import datetime, subprocess, sys
model_cost = {
"gpt-3.5-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-35-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002}, # azure model name
"gpt-3.5-turbo-0613": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-3.5-turbo-0301": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-3.5-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
"gpt-35-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004}, # azure model name
"gpt-3.5-turbo-16k-0613": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
"gpt-4": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
"gpt-4-0613": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
"gpt-4-32k": {"max_tokens": 8000, "input_cost_per_token": 0.00006, "output_cost_per_token": 0.00012},
"claude-instant-1": {"max_tokens": 100000, "input_cost_per_token": 0.00000163, "output_cost_per_token": 0.00000551},
"claude-2": {"max_tokens": 100000, "input_cost_per_token": 0.00001102, "output_cost_per_token": 0.00003268},
"text-bison-001": {"max_tokens": 8192, "input_cost_per_token": 0.000004, "output_cost_per_token": 0.000004},
"chat-bison-001": {"max_tokens": 4096, "input_cost_per_token": 0.000002, "output_cost_per_token": 0.000002},
"command-nightly": {"max_tokens": 4096, "input_cost_per_token": 0.000015, "output_cost_per_token": 0.000015},
"gpt-3.5-turbo": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
},
"gpt-35-turbo": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
}, # azure model name
"gpt-3.5-turbo-0613": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
},
"gpt-3.5-turbo-0301": {
"max_tokens": 4000,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
},
"gpt-3.5-turbo-16k": {
"max_tokens": 16000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000004,
},
"gpt-35-turbo-16k": {
"max_tokens": 16000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000004,
}, # azure model name
"gpt-3.5-turbo-16k-0613": {
"max_tokens": 16000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000004,
},
"gpt-4": {
"max_tokens": 8000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.00006,
},
"gpt-4-0613": {
"max_tokens": 8000,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.00006,
},
"gpt-4-32k": {
"max_tokens": 8000,
"input_cost_per_token": 0.00006,
"output_cost_per_token": 0.00012,
},
"claude-instant-1": {
"max_tokens": 100000,
"input_cost_per_token": 0.00000163,
"output_cost_per_token": 0.00000551,
},
"claude-2": {
"max_tokens": 100000,
"input_cost_per_token": 0.00001102,
"output_cost_per_token": 0.00003268,
},
"text-bison-001": {
"max_tokens": 8192,
"input_cost_per_token": 0.000004,
"output_cost_per_token": 0.000004,
},
"chat-bison-001": {
"max_tokens": 4096,
"input_cost_per_token": 0.000002,
"output_cost_per_token": 0.000002,
},
"command-nightly": {
"max_tokens": 4096,
"input_cost_per_token": 0.000015,
"output_cost_per_token": 0.000015,
},
}
class Supabase:
# Class variables or attributes
supabase_table_name = "request_logs"
def __init__(self):
# Instance variables
self.supabase_url = os.getenv("SUPABASE_URL")
@ -35,9 +98,11 @@ class Supabase:
try:
import supabase
except ImportError:
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'supabase'])
subprocess.check_call([sys.executable, "-m", "pip", "install", "supabase"])
import supabase
self.supabase_client = supabase.create_client(self.supabase_url, self.supabase_key)
self.supabase_client = supabase.create_client(
self.supabase_url, self.supabase_key
)
def price_calculator(self, model, response_obj, start_time, end_time):
# try and find if the model is in the model_cost map
@ -45,8 +110,14 @@ class Supabase:
prompt_tokens_cost_usd_dollar = 0
completion_tokens_cost_usd_dollar = 0
if model in model_cost:
prompt_tokens_cost_usd_dollar = model_cost[model]["input_cost_per_token"] * response_obj["usage"]["prompt_tokens"]
completion_tokens_cost_usd_dollar = model_cost[model]["output_cost_per_token"] * response_obj["usage"]["completion_tokens"]
prompt_tokens_cost_usd_dollar = (
model_cost[model]["input_cost_per_token"]
* response_obj["usage"]["prompt_tokens"]
)
completion_tokens_cost_usd_dollar = (
model_cost[model]["output_cost_per_token"]
* response_obj["usage"]["completion_tokens"]
)
elif "replicate" in model:
# replicate models are charged based on time
# llama 2 runs on an nvidia a100 which costs $0.0032 per second - https://replicate.com/replicate/llama-2-70b-chat
@ -63,40 +134,74 @@ class Supabase:
output_cost_sum += model_cost[model]["output_cost_per_token"]
avg_input_cost = input_cost_sum / len(model_cost.keys())
avg_output_cost = output_cost_sum / len(model_cost.keys())
prompt_tokens_cost_usd_dollar = model_cost[model]["input_cost_per_token"] * response_obj["usage"]["prompt_tokens"]
completion_tokens_cost_usd_dollar = model_cost[model]["output_cost_per_token"] * response_obj["usage"]["completion_tokens"]
prompt_tokens_cost_usd_dollar = (
model_cost[model]["input_cost_per_token"]
* response_obj["usage"]["prompt_tokens"]
)
completion_tokens_cost_usd_dollar = (
model_cost[model]["output_cost_per_token"]
* response_obj["usage"]["completion_tokens"]
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
def log_event(self, model, messages, end_user, response_obj, start_time, end_time, print_verbose):
def log_event(
self,
model,
messages,
end_user,
response_obj,
start_time,
end_time,
print_verbose,
):
try:
print_verbose(f"Supabase Logging - Enters logging function for model {model}, response_obj: {response_obj}")
print_verbose(
f"Supabase Logging - Enters logging function for model {model}, response_obj: {response_obj}"
)
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = self.price_calculator(model, response_obj, start_time, end_time)
total_cost = prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
(
prompt_tokens_cost_usd_dollar,
completion_tokens_cost_usd_dollar,
) = self.price_calculator(model, response_obj, start_time, end_time)
total_cost = (
prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
)
response_time = (end_time-start_time).total_seconds()
response_time = (end_time - start_time).total_seconds()
if "choices" in response_obj:
supabase_data_obj = {
"response_time": response_time,
"model": response_obj["model"],
"total_cost": total_cost,
"messages": messages,
"response": response_obj['choices'][0]['message']['content'],
"end_user": end_user
"response": response_obj["choices"][0]["message"]["content"],
"end_user": end_user,
}
print_verbose(f"Supabase Logging - final data object: {supabase_data_obj}")
data, count = self.supabase_client.table(self.supabase_table_name).insert(supabase_data_obj).execute()
print_verbose(
f"Supabase Logging - final data object: {supabase_data_obj}"
)
data, count = (
self.supabase_client.table(self.supabase_table_name)
.insert(supabase_data_obj)
.execute()
)
elif "error" in response_obj:
supabase_data_obj = {
"response_time": response_time,
"model": response_obj["model"],
"total_cost": total_cost,
"messages": messages,
"error": response_obj['error'],
"end_user": end_user
"error": response_obj["error"],
"end_user": end_user,
}
print_verbose(f"Supabase Logging - final data object: {supabase_data_obj}")
data, count = self.supabase_client.table(self.supabase_table_name).insert(supabase_data_obj).execute()
print_verbose(
f"Supabase Logging - final data object: {supabase_data_obj}"
)
data, count = (
self.supabase_client.table(self.supabase_table_name)
.insert(supabase_data_obj)
.execute()
)
except:
# traceback.print_exc()

View file

@ -6,18 +6,22 @@ import time
from typing import Callable
from litellm.utils import ModelResponse
class AnthropicConstants(Enum):
HUMAN_PROMPT = "\n\nHuman:"
AI_PROMPT = "\n\nAssistant:"
class AnthropicError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
super().__init__(self.message) # Call the base class constructor with the parameters it needs
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class AnthropicLLM:
def __init__(self, encoding, default_max_tokens_to_sample, api_key=None):
self.encoding = encoding
self.default_max_tokens_to_sample = default_max_tokens_to_sample
@ -25,31 +29,50 @@ class AnthropicLLM:
self.api_key = api_key
self.validate_environment(api_key=api_key)
def validate_environment(self, api_key): # set up the environment required to run the model
def validate_environment(
self, api_key
): # set up the environment required to run the model
# set the api key
if self.api_key == None:
raise ValueError("Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params")
raise ValueError(
"Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params"
)
self.api_key = api_key
self.headers = {
"accept": "application/json",
"anthropic-version": "2023-06-01",
"content-type": "application/json",
"x-api-key": self.api_key
"x-api-key": self.api_key,
}
def completion(self, model: str, messages: list, model_response: ModelResponse, print_verbose: Callable, optional_params=None, litellm_params=None, logger_fn=None): # logic for parsing in - calling - parsing out model completion calls
def completion(
self,
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
optional_params=None,
litellm_params=None,
logger_fn=None,
): # logic for parsing in - calling - parsing out model completion calls
model = model
prompt = f"{AnthropicConstants.HUMAN_PROMPT.value}"
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
prompt += (
f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
)
else:
prompt += f"{AnthropicConstants.AI_PROMPT.value}{message['content']}"
prompt += (
f"{AnthropicConstants.AI_PROMPT.value}{message['content']}"
)
else:
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
prompt += f"{AnthropicConstants.AI_PROMPT.value}"
if "max_tokens" in optional_params and optional_params["max_tokens"] != float('inf'):
if "max_tokens" in optional_params and optional_params["max_tokens"] != float(
"inf"
):
max_tokens = optional_params["max_tokens"]
else:
max_tokens = self.default_max_tokens_to_sample
@ -57,37 +80,64 @@ class AnthropicLLM:
"model": model,
"prompt": prompt,
"max_tokens_to_sample": max_tokens,
**optional_params
**optional_params,
}
## LOGGING
logging(model=model, input=prompt, additional_args={"litellm_params": litellm_params, "optional_params": optional_params}, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
additional_args={
"litellm_params": litellm_params,
"optional_params": optional_params,
},
logger_fn=logger_fn,
)
## COMPLETION CALL
response = requests.post(self.completion_url, headers=self.headers, data=json.dumps(data))
response = requests.post(
self.completion_url, headers=self.headers, data=json.dumps(data)
)
if "stream" in optional_params and optional_params["stream"] == True:
return response.iter_lines()
else:
## LOGGING
logging(model=model, input=prompt, additional_args={"litellm_params": litellm_params, "optional_params": optional_params, "original_response": response.text}, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
additional_args={
"litellm_params": litellm_params,
"optional_params": optional_params,
"original_response": response.text,
},
logger_fn=logger_fn,
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
completion_response = response.json()
if "error" in completion_response:
raise AnthropicError(message=completion_response["error"], status_code=response.status_code)
raise AnthropicError(
message=completion_response["error"],
status_code=response.status_code,
)
else:
model_response["choices"][0]["message"]["content"] = completion_response["completion"]
model_response["choices"][0]["message"][
"content"
] = completion_response["completion"]
## CALCULATING USAGE
prompt_tokens = len(self.encoding.encode(prompt)) ##[TODO] use the anthropic tokenizer here
completion_tokens = len(self.encoding.encode(model_response["choices"][0]["message"]["content"])) ##[TODO] use the anthropic tokenizer here
prompt_tokens = len(
self.encoding.encode(prompt)
) ##[TODO] use the anthropic tokenizer here
completion_tokens = len(
self.encoding.encode(model_response["choices"][0]["message"]["content"])
) ##[TODO] use the anthropic tokenizer here
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response

View file

@ -1,6 +1,7 @@
## This is a template base class to be used for adding new LLM providers via API calls
class BaseLLM():
class BaseLLM:
def validate_environment(): # set up the environment required to run the model
pass

View file

@ -7,18 +7,24 @@ import time
from typing import Callable
from litellm.utils import ModelResponse
class HuggingfaceError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
super().__init__(self.message) # Call the base class constructor with the parameters it needs
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class HuggingfaceRestAPILLM():
class HuggingfaceRestAPILLM:
def __init__(self, encoding, api_key=None) -> None:
self.encoding = encoding
self.validate_environment(api_key=api_key)
def validate_environment(self, api_key): # set up the environment required to run the model
def validate_environment(
self, api_key
): # set up the environment required to run the model
self.headers = {
"content-type": "application/json",
}
@ -27,7 +33,17 @@ class HuggingfaceRestAPILLM():
if self.api_key != None:
self.headers["Authorization"] = f"Bearer {self.api_key}"
def completion(self, model: str, messages: list, custom_api_base: str, model_response: ModelResponse, print_verbose: Callable, optional_params=None, litellm_params=None, logger_fn=None): # logic for parsing in - calling - parsing out model completion calls
def completion(
self,
model: str,
messages: list,
custom_api_base: str,
model_response: ModelResponse,
print_verbose: Callable,
optional_params=None,
litellm_params=None,
logger_fn=None,
): # logic for parsing in - calling - parsing out model completion calls
if custom_api_base:
completion_url = custom_api_base
elif "HF_API_BASE" in os.environ:
@ -35,7 +51,9 @@ class HuggingfaceRestAPILLM():
else:
completion_url = f"https://api-inference.huggingface.co/models/{model}"
prompt = ""
if "meta-llama" in model and "chat" in model: # use the required special tokens for meta-llama - https://huggingface.co/blog/llama2#how-to-prompt-llama-2
if (
"meta-llama" in model and "chat" in model
): # use the required special tokens for meta-llama - https://huggingface.co/blog/llama2#how-to-prompt-llama-2
prompt = "<s>"
for message in messages:
if message["role"] == "system":
@ -57,14 +75,33 @@ class HuggingfaceRestAPILLM():
# "parameters": optional_params
}
## LOGGING
logging(model=model, input=prompt, additional_args={"litellm_params": litellm_params, "optional_params": optional_params}, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
additional_args={
"litellm_params": litellm_params,
"optional_params": optional_params,
},
logger_fn=logger_fn,
)
## COMPLETION CALL
response = requests.post(completion_url, headers=self.headers, data=json.dumps(data))
response = requests.post(
completion_url, headers=self.headers, data=json.dumps(data)
)
if "stream" in optional_params and optional_params["stream"] == True:
return response.iter_lines()
else:
## LOGGING
logging(model=model, input=prompt, additional_args={"litellm_params": litellm_params, "optional_params": optional_params, "original_response": response.text}, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
additional_args={
"litellm_params": litellm_params,
"optional_params": optional_params,
"original_response": response.text,
},
logger_fn=logger_fn,
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
completion_response = response.json()
@ -72,21 +109,29 @@ class HuggingfaceRestAPILLM():
if isinstance(completion_response, dict) and "error" in completion_response:
print_verbose(f"completion error: {completion_response['error']}")
print_verbose(f"response.status_code: {response.status_code}")
raise HuggingfaceError(message=completion_response["error"], status_code=response.status_code)
raise HuggingfaceError(
message=completion_response["error"],
status_code=response.status_code,
)
else:
model_response["choices"][0]["message"]["content"] = completion_response[0]["generated_text"]
model_response["choices"][0]["message"][
"content"
] = completion_response[0]["generated_text"]
## CALCULATING USAGE
prompt_tokens = len(self.encoding.encode(prompt)) ##[TODO] use the llama2 tokenizer here
completion_tokens = len(self.encoding.encode(model_response["choices"][0]["message"]["content"])) ##[TODO] use the llama2 tokenizer here
prompt_tokens = len(
self.encoding.encode(prompt)
) ##[TODO] use the llama2 tokenizer here
completion_tokens = len(
self.encoding.encode(model_response["choices"][0]["message"]["content"])
) ##[TODO] use the llama2 tokenizer here
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response
pass

View file

@ -4,17 +4,43 @@ from functools import partial
import dotenv, traceback, random, asyncio, time
from copy import deepcopy
import litellm
from litellm import client, logging, exception_type, timeout, get_optional_params, get_litellm_params
from litellm.utils import get_secret, install_and_import, CustomStreamWrapper, read_config_args
from litellm import (
client,
logging,
exception_type,
timeout,
get_optional_params,
get_litellm_params,
)
from litellm.utils import (
get_secret,
install_and_import,
CustomStreamWrapper,
read_config_args,
)
from .llms.anthropic import AnthropicLLM
from .llms.huggingface_restapi import HuggingfaceRestAPILLM
import tiktoken
from concurrent.futures import ThreadPoolExecutor
encoding = tiktoken.get_encoding("cl100k_base")
from litellm.utils import get_secret, install_and_import, CustomStreamWrapper, ModelResponse, read_config_args
from litellm.utils import get_ollama_response_stream, stream_to_string, together_ai_completion_streaming
from litellm.utils import (
get_secret,
install_and_import,
CustomStreamWrapper,
ModelResponse,
read_config_args,
)
from litellm.utils import (
get_ollama_response_stream,
stream_to_string,
together_ai_completion_streaming,
)
####### ENVIRONMENT VARIABLES ###################
dotenv.load_dotenv() # Loading env variables using dotenv
####### COMPLETION ENDPOINTS ################
#############################################
async def acompletion(*args, **kwargs):
@ -26,115 +52,198 @@ async def acompletion(*args, **kwargs):
# Call the synchronous function using run_in_executor
return await loop.run_in_executor(None, func)
@client
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(2), reraise=True, retry_error_callback=lambda retry_state: setattr(retry_state.outcome, 'retry_variable', litellm.retry)) # retry call, turn this off by setting `litellm.retry = False`
@timeout(600) ## set timeouts, in case calls hang (e.g. Azure) - default is 60s, override with `force_timeout`
@timeout(
600
) ## set timeouts, in case calls hang (e.g. Azure) - default is 60s, override with `force_timeout`
def completion(
model, messages,# required params
model,
messages, # required params
# Optional OpenAI params: see https://platform.openai.com/docs/api-reference/chat/create
functions=[], function_call="", # optional params
temperature=1, top_p=1, n=1, stream=False, stop=None, max_tokens=float('inf'),
presence_penalty=0, frequency_penalty=0, logit_bias={}, user="", deployment_id=None,
functions=[],
function_call="", # optional params
temperature=1,
top_p=1,
n=1,
stream=False,
stop=None,
max_tokens=float("inf"),
presence_penalty=0,
frequency_penalty=0,
logit_bias={},
user="",
deployment_id=None,
# Optional liteLLM function params
*, return_async=False, api_key=None, force_timeout=600, logger_fn=None, verbose=False, azure=False, custom_llm_provider=None, custom_api_base=None,
*,
return_async=False,
api_key=None,
force_timeout=600,
logger_fn=None,
verbose=False,
azure=False,
custom_llm_provider=None,
custom_api_base=None,
# model specific optional params
# used by text-bison only
top_k=40, request_timeout=0, # unused var for old version of OpenAI API
) -> ModelResponse:
top_k=40,
request_timeout=0, # unused var for old version of OpenAI API
) -> ModelResponse:
try:
model_response = ModelResponse()
if azure: # this flag is deprecated, remove once notebooks are also updated.
custom_llm_provider="azure"
custom_llm_provider = "azure"
args = locals()
# check if user passed in any of the OpenAI optional params
optional_params = get_optional_params(
functions=functions, function_call=function_call,
temperature=temperature, top_p=top_p, n=n, stream=stream, stop=stop, max_tokens=max_tokens,
presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, logit_bias=logit_bias, user=user, deployment_id=deployment_id,
functions=functions,
function_call=function_call,
temperature=temperature,
top_p=top_p,
n=n,
stream=stream,
stop=stop,
max_tokens=max_tokens,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
logit_bias=logit_bias,
user=user,
deployment_id=deployment_id,
# params to identify the model
model=model, custom_llm_provider=custom_llm_provider, top_k=top_k,
model=model,
custom_llm_provider=custom_llm_provider,
top_k=top_k,
)
# For logging - save the values of the litellm-specific params passed in
litellm_params = get_litellm_params(
return_async=return_async, api_key=api_key, force_timeout=force_timeout,
logger_fn=logger_fn, verbose=verbose, custom_llm_provider=custom_llm_provider,
custom_api_base=custom_api_base)
return_async=return_async,
api_key=api_key,
force_timeout=force_timeout,
logger_fn=logger_fn,
verbose=verbose,
custom_llm_provider=custom_llm_provider,
custom_api_base=custom_api_base,
)
if custom_llm_provider == "azure":
# azure configs
openai.api_type = "azure"
openai.api_base = litellm.api_base if litellm.api_base is not None else get_secret("AZURE_API_BASE")
openai.api_version = litellm.api_version if litellm.api_version is not None else get_secret("AZURE_API_VERSION")
openai.api_base = (
litellm.api_base
if litellm.api_base is not None
else get_secret("AZURE_API_BASE")
)
openai.api_version = (
litellm.api_version
if litellm.api_version is not None
else get_secret("AZURE_API_VERSION")
)
# set key
openai.api_key = api_key or litellm.azure_key or get_secret("AZURE_API_KEY")
## LOGGING
logging(model=model, input=messages, additional_args=optional_params, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
logging(
model=model,
input=messages,
additional_args=optional_params,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
## COMPLETION CALL
if litellm.headers:
response = openai.ChatCompletion.create(
engine=model,
messages = messages,
headers = litellm.headers,
messages=messages,
headers=litellm.headers,
**optional_params,
)
else:
response = openai.ChatCompletion.create(
model=model,
messages = messages,
**optional_params
model=model, messages=messages, **optional_params
)
elif model in litellm.open_ai_chat_completion_models or custom_llm_provider == "custom_openai": # allow user to make an openai call with a custom base
elif (
model in litellm.open_ai_chat_completion_models
or custom_llm_provider == "custom_openai"
): # allow user to make an openai call with a custom base
openai.api_type = "openai"
# note: if a user sets a custom base - we should ensure this works
api_base = custom_api_base if custom_api_base is not None else litellm.api_base # allow for the setting of dynamic and stateful api-bases
openai.api_base = api_base if api_base is not None else "https://api.openai.com/v1"
api_base = (
custom_api_base if custom_api_base is not None else litellm.api_base
) # allow for the setting of dynamic and stateful api-bases
openai.api_base = (
api_base if api_base is not None else "https://api.openai.com/v1"
)
openai.api_version = None
if litellm.organization:
openai.organization = litellm.organization
# set API KEY
openai.api_key = api_key or litellm.openai_key or get_secret("OPENAI_API_KEY")
openai.api_key = (
api_key or litellm.openai_key or get_secret("OPENAI_API_KEY")
)
## LOGGING
logging(model=model, input=messages, additional_args=args, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
logging(
model=model,
input=messages,
additional_args=args,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
## COMPLETION CALL
if litellm.headers:
response = openai.ChatCompletion.create(
model=model,
messages = messages,
headers = litellm.headers,
**optional_params
messages=messages,
headers=litellm.headers,
**optional_params,
)
else:
response = openai.ChatCompletion.create(
model=model,
messages = messages,
**optional_params
model=model, messages=messages, **optional_params
)
elif model in litellm.open_ai_text_completion_models:
openai.api_type = "openai"
openai.api_base = litellm.api_base if litellm.api_base is not None else "https://api.openai.com/v1"
openai.api_base = (
litellm.api_base
if litellm.api_base is not None
else "https://api.openai.com/v1"
)
openai.api_version = None
openai.api_key = api_key or litellm.openai_key or get_secret("OPENAI_API_KEY")
openai.api_key = (
api_key or litellm.openai_key or get_secret("OPENAI_API_KEY")
)
if litellm.organization:
openai.organization = litellm.organization
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, additional_args=optional_params, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
additional_args=optional_params,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
## COMPLETION CALL
if litellm.headers:
response = openai.Completion.create(
model=model,
prompt = prompt,
headers = litellm.headers,
prompt=prompt,
headers=litellm.headers,
)
else:
response = openai.Completion.create(
model=model,
prompt = prompt
)
response = openai.Completion.create(model=model, prompt=prompt)
completion_response = response["choices"][0]["text"]
## LOGGING
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": completion_response,
},
logger_fn=logger_fn,
)
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = completion_response
model_response["created"] = response["created"]
@ -145,11 +254,17 @@ def completion(
# import replicate/if it fails then pip install replicate
install_and_import("replicate")
import replicate
# Setting the relevant API KEY for replicate, replicate defaults to using os.environ.get("REPLICATE_API_TOKEN")
replicate_key = os.environ.get("REPLICATE_API_TOKEN")
if replicate_key == None:
# user did not set REPLICATE_API_TOKEN in .env
replicate_key = get_secret("REPLICATE_API_KEY") or get_secret("REPLICATE_API_TOKEN") or api_key or litellm.replicate_key
replicate_key = (
get_secret("REPLICATE_API_KEY")
or get_secret("REPLICATE_API_TOKEN")
or api_key
or litellm.replicate_key
)
# set replicate kye
os.environ["REPLICATE_API_TOKEN"] = replicate_key
prompt = " ".join([message["content"] for message in messages])
@ -158,12 +273,16 @@ def completion(
input["max_length"] = max_tokens # for t5 models
input["max_new_tokens"] = max_tokens # for llama2 models
## LOGGING
logging(model=model, input=input, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn)
logging(
model=model,
input=input,
custom_llm_provider=custom_llm_provider,
additional_args={"max_tokens": max_tokens},
logger_fn=logger_fn,
)
## COMPLETION CALL
output = replicate.run(
model,
input=input)
if 'stream' in optional_params and optional_params['stream'] == True:
output = replicate.run(model, input=input)
if "stream" in optional_params and optional_params["stream"] == True:
# don't try to access stream object,
# let the stream handler know this is replicate
response = CustomStreamWrapper(output, "replicate")
@ -173,7 +292,16 @@ def completion(
response += item
completion_response = response
## LOGGING
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": completion_response,
},
logger_fn=logger_fn,
)
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(encoding.encode(completion_response))
## RESPONSE OBJECT
@ -183,14 +311,28 @@ def completion(
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
"total_tokens": prompt_tokens + completion_tokens,
}
response = model_response
elif model in litellm.anthropic_models:
anthropic_key = api_key or litellm.anthropic_key or os.environ.get("ANTHROPIC_API_KEY")
anthropic_client = AnthropicLLM(encoding=encoding, default_max_tokens_to_sample=litellm.max_tokens, api_key=anthropic_key)
model_response = anthropic_client.completion(model=model, messages=messages, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn)
if 'stream' in optional_params and optional_params['stream'] == True:
anthropic_key = (
api_key or litellm.anthropic_key or os.environ.get("ANTHROPIC_API_KEY")
)
anthropic_client = AnthropicLLM(
encoding=encoding,
default_max_tokens_to_sample=litellm.max_tokens,
api_key=anthropic_key,
)
model_response = anthropic_client.completion(
model=model,
messages=messages,
model_response=model_response,
print_verbose=print_verbose,
optional_params=optional_params,
litellm_params=litellm_params,
logger_fn=logger_fn,
)
if "stream" in optional_params and optional_params["stream"] == True:
# don't try to access stream object,
response = CustomStreamWrapper(model_response, model)
return response
@ -198,7 +340,11 @@ def completion(
elif model in litellm.openrouter_models or custom_llm_provider == "openrouter":
openai.api_type = "openai"
# not sure if this will work after someone first uses another API
openai.api_base = litellm.api_base if litellm.api_base is not None else "https://openrouter.ai/api/v1"
openai.api_base = (
litellm.api_base
if litellm.api_base is not None
else "https://openrouter.ai/api/v1"
)
openai.api_version = None
if litellm.organization:
openai.organization = litellm.organization
@ -207,16 +353,24 @@ def completion(
elif litellm.openrouter_key:
openai.api_key = litellm.openrouter_key
else:
openai.api_key = get_secret("OPENROUTER_API_KEY") or get_secret("OR_API_KEY")
openai.api_key = get_secret("OPENROUTER_API_KEY") or get_secret(
"OR_API_KEY"
)
## LOGGING
logging(model=model, input=messages, additional_args=optional_params, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
logging(
model=model,
input=messages,
additional_args=optional_params,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
## COMPLETION CALL
if litellm.headers:
response = openai.ChatCompletion.create(
model=model,
messages = messages,
headers = litellm.headers,
**optional_params
messages=messages,
headers=litellm.headers,
**optional_params,
)
else:
openrouter_site_url = get_secret("OR_SITE_URL")
@ -229,37 +383,52 @@ def completion(
openrouter_app_name = "liteLLM"
response = openai.ChatCompletion.create(
model=model,
messages = messages,
headers =
{
messages=messages,
headers={
"HTTP-Referer": openrouter_site_url, # To identify your site
"X-Title": openrouter_app_name # To identify your app
"X-Title": openrouter_app_name, # To identify your app
},
**optional_params
**optional_params,
)
elif model in litellm.cohere_models:
# import cohere/if it fails then pip install cohere
install_and_import("cohere")
import cohere
cohere_key = api_key or litellm.cohere_key or get_secret("COHERE_API_KEY") or get_secret("CO_API_KEY")
cohere_key = (
api_key
or litellm.cohere_key
or get_secret("COHERE_API_KEY")
or get_secret("CO_API_KEY")
)
co = cohere.Client(cohere_key)
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
## COMPLETION CALL
response = co.generate(
logging(
model=model,
prompt = prompt,
**optional_params
input=prompt,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
if 'stream' in optional_params and optional_params['stream'] == True:
## COMPLETION CALL
response = co.generate(model=model, prompt=prompt, **optional_params)
if "stream" in optional_params and optional_params["stream"] == True:
# don't try to access stream object,
response = CustomStreamWrapper(response, model)
return response
completion_response = response[0].text
## LOGGING
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": completion_response,
},
logger_fn=logger_fn,
)
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(encoding.encode(completion_response))
## RESPONSE OBJECT
@ -269,52 +438,100 @@ def completion(
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
"total_tokens": prompt_tokens + completion_tokens,
}
response = model_response
elif model in litellm.huggingface_models or custom_llm_provider == "huggingface":
elif (
model in litellm.huggingface_models or custom_llm_provider == "huggingface"
):
custom_llm_provider = "huggingface"
huggingface_key = api_key or litellm.huggingface_key or os.environ.get("HF_TOKEN") or os.environ.get("HUGGINGFACE_API_KEY")
huggingface_client = HuggingfaceRestAPILLM(encoding=encoding, api_key=huggingface_key)
model_response = huggingface_client.completion(model=model, messages=messages, custom_api_base=custom_api_base, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn)
if 'stream' in optional_params and optional_params['stream'] == True:
huggingface_key = (
api_key
or litellm.huggingface_key
or os.environ.get("HF_TOKEN")
or os.environ.get("HUGGINGFACE_API_KEY")
)
huggingface_client = HuggingfaceRestAPILLM(
encoding=encoding, api_key=huggingface_key
)
model_response = huggingface_client.completion(
model=model,
messages=messages,
custom_api_base=custom_api_base,
model_response=model_response,
print_verbose=print_verbose,
optional_params=optional_params,
litellm_params=litellm_params,
logger_fn=logger_fn,
)
if "stream" in optional_params and optional_params["stream"] == True:
# don't try to access stream object,
response = CustomStreamWrapper(model_response, model, custom_llm_provider="huggingface")
response = CustomStreamWrapper(
model_response, model, custom_llm_provider="huggingface"
)
return response
response = model_response
elif custom_llm_provider == "together_ai" or ("togethercomputer" in model):
import requests
TOGETHER_AI_TOKEN = get_secret("TOGETHER_AI_TOKEN") or get_secret("TOGETHERAI_API_KEY") or api_key or litellm.togetherai_api_key
TOGETHER_AI_TOKEN = (
get_secret("TOGETHER_AI_TOKEN")
or get_secret("TOGETHERAI_API_KEY")
or api_key
or litellm.togetherai_api_key
)
headers = {"Authorization": f"Bearer {TOGETHER_AI_TOKEN}"}
endpoint = 'https://api.together.xyz/inference'
prompt = " ".join([message["content"] for message in messages]) # TODO: Add chat support for together AI
endpoint = "https://api.together.xyz/inference"
prompt = " ".join(
[message["content"] for message in messages]
) # TODO: Add chat support for together AI
## LOGGING
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
if stream == True:
return together_ai_completion_streaming({
return together_ai_completion_streaming(
{
"model": model,
"prompt": prompt,
"request_type": "language-model-inference",
**optional_params
**optional_params,
},
headers=headers)
res = requests.post(endpoint, json={
headers=headers,
)
res = requests.post(
endpoint,
json={
"model": model,
"prompt": prompt,
"request_type": "language-model-inference",
**optional_params
**optional_params,
},
headers=headers
headers=headers,
)
## LOGGING
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": res.text}, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": res.text,
},
logger_fn=logger_fn,
)
# make this safe for reading, if output does not exist raise an error
json_response = res.json()
if "output" not in json_response:
raise Exception(f"liteLLM: Error Making TogetherAI request, JSON Response {json_response}")
completion_response = json_response['output']['choices'][0]['text']
raise Exception(
f"liteLLM: Error Making TogetherAI request, JSON Response {json_response}"
)
completion_response = json_response["output"]["choices"][0]["text"]
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(encoding.encode(completion_response))
## RESPONSE OBJECT
@ -324,7 +541,7 @@ def completion(
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
"total_tokens": prompt_tokens + completion_tokens,
}
response = model_response
elif model in litellm.vertex_chat_models:
@ -332,21 +549,41 @@ def completion(
install_and_import("vertexai")
import vertexai
from vertexai.preview.language_models import ChatModel, InputOutputTextPair
vertexai.init(project=litellm.vertex_project, location=litellm.vertex_location)
vertexai.init(
project=litellm.vertex_project, location=litellm.vertex_location
)
# vertexai does not use an API key, it looks for credentials.json in the environment
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"litellm_params": litellm_params, "optional_params": optional_params}, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"litellm_params": litellm_params,
"optional_params": optional_params,
},
logger_fn=logger_fn,
)
chat_model = ChatModel.from_pretrained(model)
chat = chat_model.start_chat()
completion_response = chat.send_message(prompt, **optional_params)
## LOGGING
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": completion_response,
},
logger_fn=logger_fn,
)
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = completion_response
@ -358,17 +595,33 @@ def completion(
import vertexai
from vertexai.language_models import TextGenerationModel
vertexai.init(project=litellm.vertex_project, location=litellm.vertex_location)
vertexai.init(
project=litellm.vertex_project, location=litellm.vertex_location
)
# vertexai does not use an API key, it looks for credentials.json in the environment
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
vertex_model = TextGenerationModel.from_pretrained(model)
completion_response= vertex_model.predict(prompt, **optional_params)
completion_response = vertex_model.predict(prompt, **optional_params)
## LOGGING
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": completion_response,
},
logger_fn=logger_fn,
)
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = completion_response
@ -378,20 +631,35 @@ def completion(
elif model in litellm.ai21_models:
install_and_import("ai21")
import ai21
ai21.api_key = get_secret("AI21_API_KEY")
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
ai21_response = ai21.Completion.execute(
model=model,
prompt=prompt,
)
completion_response = ai21_response['completions'][0]['data']['text']
completion_response = ai21_response["completions"][0]["data"]["text"]
## LOGGING
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": completion_response,
},
logger_fn=logger_fn,
)
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = completion_response
@ -399,7 +667,9 @@ def completion(
model_response["model"] = model
response = model_response
elif custom_llm_provider == "ollama":
endpoint = litellm.api_base if litellm.api_base is not None else custom_api_base
endpoint = (
litellm.api_base if litellm.api_base is not None else custom_api_base
)
prompt = " ".join([message["content"] for message in messages])
## LOGGING
@ -407,14 +677,23 @@ def completion(
generator = get_ollama_response_stream(endpoint, model, prompt)
# assume all responses are streamed
return generator
elif custom_llm_provider == "baseten" or litellm.api_base=="https://app.baseten.co":
elif (
custom_llm_provider == "baseten"
or litellm.api_base == "https://app.baseten.co"
):
import baseten
base_ten_key = get_secret('BASETEN_API_KEY')
base_ten_key = get_secret("BASETEN_API_KEY")
baseten.login(base_ten_key)
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
base_ten__model = baseten.deployed_model_version_id(model)
@ -424,7 +703,16 @@ def completion(
if type(completion_response) == dict:
completion_response = completion_response["generated_text"]
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": completion_response,
},
logger_fn=logger_fn,
)
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = completion_response
@ -432,16 +720,35 @@ def completion(
model_response["model"] = model
response = model_response
elif custom_llm_provider == "petals" or (litellm.api_base and "chat.petals.dev" in litellm.api_base):
elif custom_llm_provider == "petals" or (
litellm.api_base and "chat.petals.dev" in litellm.api_base
):
url = "https://chat.petals.dev/api/v1/generate"
import requests
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
response = requests.post(url, data={"inputs": prompt, "max_new_tokens": 100, "model": model})
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
response = requests.post(
url, data={"inputs": prompt, "max_new_tokens": 100, "model": model}
)
## LOGGING
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": response}, logger_fn=logger_fn)
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": response,
},
logger_fn=logger_fn,
)
completion_response = response.json()["outputs"]
# RESPONSE OBJECT
@ -451,15 +758,32 @@ def completion(
response = model_response
else:
## LOGGING
logging(model=model, input=messages, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
logging(
model=model,
input=messages,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
args = locals()
raise ValueError(f"Unable to map your input to a model. Check your input - {args}")
raise ValueError(
f"Unable to map your input to a model. Check your input - {args}"
)
return response
except Exception as e:
## LOGGING
logging(model=model, input=messages, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn, exception=e)
logging(
model=model,
input=messages,
custom_llm_provider=custom_llm_provider,
additional_args={"max_tokens": max_tokens},
logger_fn=logger_fn,
exception=e,
)
## Map to OpenAI Exception
raise exception_type(model=model, custom_llm_provider=custom_llm_provider, original_exception=e)
raise exception_type(
model=model, custom_llm_provider=custom_llm_provider, original_exception=e
)
def batch_completion(*args, **kwargs):
batch_messages = args[1] if len(args) > 1 else kwargs.get("messages")
@ -480,9 +804,12 @@ def batch_completion(*args, **kwargs):
results = [future.result() for future in completions]
return results
### EMBEDDING ENDPOINTS ####################
@client
@timeout(60) ## set timeouts, in case calls hang (e.g. Azure) - default is 60s, override with `force_timeout`
@timeout(
60
) ## set timeouts, in case calls hang (e.g. Azure) - default is 60s, override with `force_timeout`
def embedding(model, input=[], azure=False, force_timeout=60, logger_fn=None):
try:
response = None
@ -519,6 +846,8 @@ def embedding(model, input=[], azure=False, force_timeout=60, logger_fn=None):
## Map to OpenAI Exception
raise exception_type(model=model, original_exception=e)
raise e
####### HELPER FUNCTIONS ################
## Set verbose to true -> ```litellm.set_verbose = True```
def print_verbose(print_statement):
@ -527,10 +856,13 @@ def print_verbose(print_statement):
if random.random() <= 0.3:
print("Get help - https://discord.com/invite/wuPM9dRgDw")
def config_completion(**kwargs):
if litellm.config_path != None:
config_args = read_config_args(litellm.config_path)
# overwrite any args passed in with config args
return completion(**kwargs, **config_args)
else:
raise ValueError("No config path set, please set a config path using `litellm.config_path = 'path/to/config.json'`")
raise ValueError(
"No config path set, please set a config path using `litellm.config_path = 'path/to/config.json'`"
)

View file

@ -3,9 +3,12 @@ import time
from concurrent.futures import ThreadPoolExecutor
import traceback
def testing_batch_completion(*args, **kwargs):
try:
batch_models = args[0] if len(args) > 0 else kwargs.pop("models") ## expected input format- ["gpt-3.5-turbo", {"model": "qvv0xeq", "custom_llm_provider"="baseten"}...]
batch_models = (
args[0] if len(args) > 0 else kwargs.pop("models")
) ## expected input format- ["gpt-3.5-turbo", {"model": "qvv0xeq", "custom_llm_provider"="baseten"}...]
batch_messages = args[1] if len(args) > 1 else kwargs.pop("messages")
results = []
completions = []
@ -18,16 +21,32 @@ def testing_batch_completion(*args, **kwargs):
if len(args) > 0:
args_modified[0] = model["model"]
else:
kwargs_modified["model"] = model["model"] if isinstance(model, dict) and "model" in model else model # if model is a dictionary get it's value else assume it's a string
kwargs_modified["custom_llm_provider"] = model["custom_llm_provider"] if isinstance(model, dict) and "custom_llm_provider" in model else None
kwargs_modified["custom_api_base"] = model["custom_api_base"] if isinstance(model, dict) and "custom_api_base" in model else None
kwargs_modified["model"] = (
model["model"]
if isinstance(model, dict) and "model" in model
else model
) # if model is a dictionary get it's value else assume it's a string
kwargs_modified["custom_llm_provider"] = (
model["custom_llm_provider"]
if isinstance(model, dict) and "custom_llm_provider" in model
else None
)
kwargs_modified["custom_api_base"] = (
model["custom_api_base"]
if isinstance(model, dict) and "custom_api_base" in model
else None
)
for message_list in batch_messages:
if len(args) > 1:
args_modified[1] = message_list
future = executor.submit(litellm.completion, *args_modified, **kwargs_modified)
future = executor.submit(
litellm.completion, *args_modified, **kwargs_modified
)
else:
kwargs_modified["messages"] = message_list
future = executor.submit(litellm.completion, *args_modified, **kwargs_modified)
future = executor.submit(
litellm.completion, *args_modified, **kwargs_modified
)
completions.append((future, message_list))
# Retrieve the results and calculate elapsed time for each completion call
@ -38,17 +57,27 @@ def testing_batch_completion(*args, **kwargs):
result = future.result()
end_time = time.time()
elapsed_time = end_time - start_time
result_dict = {"status": "succeeded", "response": future.result(), "prompt": message_list, "response_time": elapsed_time}
result_dict = {
"status": "succeeded",
"response": future.result(),
"prompt": message_list,
"response_time": elapsed_time,
}
results.append(result_dict)
except Exception as e:
end_time = time.time()
elapsed_time = end_time - start_time
result_dict = {"status": "failed", "response": e, "response_time": elapsed_time}
result_dict = {
"status": "failed",
"response": e,
"response_time": elapsed_time,
}
results.append(result_dict)
return results
except:
traceback.print_exc()
def duration_test_model(original_function):
def wrapper_function(*args, **kwargs):
# Code to be executed before the original function
@ -70,22 +99,39 @@ def duration_test_model(original_function):
# Return the wrapper function
return wrapper_function
@duration_test_model
def load_test_model(models: list, prompt: str = None, num_calls: int = None):
test_calls = 100
if num_calls:
test_calls = num_calls
input_prompt = prompt if prompt else "Hey, how's it going?"
messages = [{"role": "user", "content": prompt}] if prompt else [{"role": "user", "content": input_prompt}]
full_message_list = [messages for _ in range(test_calls)] # call it as many times as set by user to load test models
messages = (
[{"role": "user", "content": prompt}]
if prompt
else [{"role": "user", "content": input_prompt}]
)
full_message_list = [
messages for _ in range(test_calls)
] # call it as many times as set by user to load test models
start_time = time.time()
try:
results = testing_batch_completion(models=models, messages=full_message_list)
end_time = time.time()
response_time = end_time - start_time
return {"total_response_time": response_time, "calls_made": test_calls, "prompt": input_prompt, "results": results}
return {
"total_response_time": response_time,
"calls_made": test_calls,
"prompt": input_prompt,
"results": results,
}
except Exception as e:
traceback.print_exc()
end_time = time.time()
response_time = end_time - start_time
return {"total_response_time": response_time, "calls_made": test_calls, "prompt": input_prompt, "exception": e}
return {
"total_response_time": response_time,
"calls_made": test_calls,
"prompt": input_prompt,
"exception": e,
}

View file

@ -3,24 +3,34 @@
import sys, os
import traceback
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import embedding, completion
litellm.set_verbose = False
def logger_fn(model_call_object: dict):
print(f"model call details: {model_call_object}")
user_message = "Hello, how are you?"
messages = [{ "content": user_message,"role": "user"}]
messages = [{"content": user_message, "role": "user"}]
## Test 1: Setting key dynamically
temp_key = os.environ.get("ANTHROPIC_API_KEY")
os.environ["ANTHROPIC_API_KEY"] = "bad-key"
# test on openai completion call
try:
response = completion(model="claude-instant-1", messages=messages, logger_fn=logger_fn, api_key=temp_key)
response = completion(
model="claude-instant-1",
messages=messages,
logger_fn=logger_fn,
api_key=temp_key,
)
print(f"response: {response}")
except:
print(f"error occurred: {traceback.format_exc()}")
@ -33,7 +43,9 @@ litellm.anthropic_key = os.environ.get("ANTHROPIC_API_KEY")
os.environ.pop("ANTHROPIC_API_KEY")
# test on openai completion call
try:
response = completion(model="claude-instant-1", messages=messages, logger_fn=logger_fn)
response = completion(
model="claude-instant-1", messages=messages, logger_fn=logger_fn
)
print(f"response: {response}")
except:
print(f"error occurred: {traceback.format_exc()}")

View file

@ -5,17 +5,22 @@ import sys, os
import pytest
import traceback
import asyncio
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from litellm import acompletion
async def test_get_response():
user_message = "Hello, how are you?"
messages = [{ "content": user_message,"role": "user"}]
messages = [{"content": user_message, "role": "user"}]
try:
response = await acompletion(model="gpt-3.5-turbo", messages=messages)
except Exception as e:
pytest.fail(f"error occurred: {e}")
return response
response = asyncio.run(test_get_response())
print(response)

View file

@ -5,12 +5,13 @@
import sys, os
import traceback
from dotenv import load_dotenv
load_dotenv()
# Get the current directory of the script
current_dir = os.path.dirname(os.path.abspath(__file__))
# Get the parent directory by joining the current directory with '..'
parent_dir = os.path.join(current_dir, '../..')
parent_dir = os.path.join(current_dir, "../..")
# Add the parent directory to the system path
sys.path.append(parent_dir)
@ -26,7 +27,7 @@ litellm.failure_callback = ["slack", "sentry", "posthog"]
user_message = "Hello, how are you?"
messages = [{ "content": user_message,"role": "user"}]
messages = [{"content": user_message, "role": "user"}]
model_val = None
@ -39,7 +40,7 @@ def test_completion_with_empty_model():
pass
#bad key
# bad key
temp_key = os.environ.get("OPENAI_API_KEY")
os.environ["OPENAI_API_KEY"] = "bad-key"
# test on openai completion call

View file

@ -3,7 +3,10 @@
import sys, os
import traceback
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import batch_completion

View file

@ -1,9 +1,13 @@
import sys, os
import traceback
from dotenv import load_dotenv
load_dotenv()
import os
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
import litellm
from litellm import embedding, completion
@ -12,7 +16,6 @@ litellm.caching = True
messages = [{"role": "user", "content": "who is ishaan Github? "}]
# test if response cached
def test_caching():
try:
@ -29,7 +32,3 @@ def test_caching():
litellm.caching = False
print(f"error occurred: {traceback.format_exc()}")
pytest.fail(f"Error occurred: {e}")

View file

@ -5,7 +5,9 @@ import sys, os
import traceback
import pytest
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import embedding, completion
@ -14,17 +16,22 @@ litellm.failure_callback = ["slack", "sentry", "posthog"]
litellm.set_verbose = True
def logger_fn(model_call_object: dict):
# print(f"model call details: {model_call_object}")
pass
user_message = "Hello, how are you?"
messages = [{ "content": user_message,"role": "user"}]
messages = [{"content": user_message, "role": "user"}]
def test_completion_openai():
try:
print("running query")
response = completion(model="gpt-3.5-turbo", messages=messages, logger_fn=logger_fn)
response = completion(
model="gpt-3.5-turbo", messages=messages, logger_fn=logger_fn
)
print(f"response: {response}")
# Add any assertions here to check the response
except Exception as e:
@ -34,33 +41,46 @@ def test_completion_openai():
def test_completion_claude():
try:
response = completion(model="claude-instant-1", messages=messages, logger_fn=logger_fn)
response = completion(
model="claude-instant-1", messages=messages, logger_fn=logger_fn
)
# Add any assertions here to check the response
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_non_openai():
try:
response = completion(model="command-nightly", messages=messages, logger_fn=logger_fn)
response = completion(
model="command-nightly", messages=messages, logger_fn=logger_fn
)
# Add any assertions here to check the response
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_embedding_openai():
try:
response = embedding(model='text-embedding-ada-002', input=[user_message], logger_fn=logger_fn)
response = embedding(
model="text-embedding-ada-002", input=[user_message], logger_fn=logger_fn
)
# Add any assertions here to check the response
print(f"response: {str(response)[:50]}")
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_bad_azure_embedding():
try:
response = embedding(model='chatgpt-test', input=[user_message], logger_fn=logger_fn)
response = embedding(
model="chatgpt-test", input=[user_message], logger_fn=logger_fn
)
# Add any assertions here to check the response
print(f"response: {str(response)[:50]}")
except Exception as e:
pass
# def test_good_azure_embedding():
# try:
# response = embedding(model='azure-embedding-model', input=[user_message], azure=True, logger_fn=logger_fn)
@ -68,4 +88,3 @@ def test_bad_azure_embedding():
# print(f"response: {str(response)[:50]}")
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")

View file

@ -1,44 +1,58 @@
import sys, os
import traceback
from dotenv import load_dotenv
load_dotenv()
import os
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
import litellm
from litellm import embedding, completion
# from infisical import InfisicalClient
# litellm.set_verbose = True
# litellm.secret_manager_client = InfisicalClient(token=os.environ["INFISICAL_TOKEN"])
user_message = "Hello, whats the weather in San Francisco??"
messages = [{ "content": user_message,"role": "user"}]
messages = [{"content": user_message, "role": "user"}]
def logger_fn(user_model_dict):
print(f"user_model_dict: {user_model_dict}")
def test_completion_claude():
try:
response = completion(model="claude-instant-1", messages=messages, logger_fn=logger_fn)
response = completion(
model="claude-instant-1", messages=messages, logger_fn=logger_fn
)
# Add any assertions here to check the response
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_claude_stream():
try:
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "how does a court case get to the Supreme Court?"}
{
"role": "user",
"content": "how does a court case get to the Supreme Court?",
},
]
response = completion(model="claude-2", messages=messages, stream=True)
# Add any assertions here to check the response
for chunk in response:
print(chunk['choices'][0]['delta']) # same as openai format
print(chunk["choices"][0]["delta"]) # same as openai format
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# def test_completion_hf_api():
# try:
# user_message = "write some code to find the sum of two numbers"
@ -62,10 +76,12 @@ def test_completion_claude_stream():
def test_completion_cohere():
try:
response = completion(model="command-nightly", messages=messages, max_tokens=100)
response = completion(
model="command-nightly", messages=messages, max_tokens=100
)
# Add any assertions here to check the response
print(response)
response_str = response['choices'][0]['message']['content']
response_str = response["choices"][0]["message"]["content"]
print(f"str response{response_str}")
response_str_2 = response.choices[0].message.content
if type(response_str) != str:
@ -75,24 +91,31 @@ def test_completion_cohere():
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_cohere_stream():
try:
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "how does a court case get to the Supreme Court?"}
{
"role": "user",
"content": "how does a court case get to the Supreme Court?",
},
]
response = completion(model="command-nightly", messages=messages, stream=True, max_tokens=50)
response = completion(
model="command-nightly", messages=messages, stream=True, max_tokens=50
)
# Add any assertions here to check the response
for chunk in response:
print(chunk['choices'][0]['delta']) # same as openai format
print(chunk["choices"][0]["delta"]) # same as openai format
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_openai():
try:
response = completion(model="gpt-3.5-turbo", messages=messages)
response_str = response['choices'][0]['message']['content']
response_str = response["choices"][0]["message"]["content"]
response_str_2 = response.choices[0].message.content
assert response_str == response_str_2
assert type(response_str) == str
@ -100,6 +123,7 @@ def test_completion_openai():
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_text_openai():
try:
response = completion(model="text-davinci-003", messages=messages)
@ -108,17 +132,31 @@ def test_completion_text_openai():
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_openai_with_optional_params():
try:
response = completion(model="gpt-3.5-turbo", messages=messages, temperature=0.5, top_p=0.1, user="ishaan_dev@berri.ai")
response = completion(
model="gpt-3.5-turbo",
messages=messages,
temperature=0.5,
top_p=0.1,
user="ishaan_dev@berri.ai",
)
# Add any assertions here to check the response
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_openrouter():
try:
response = completion(model="google/palm-2-chat-bison", messages=messages, temperature=0.5, top_p=0.1, user="ishaan_dev@berri.ai")
response = completion(
model="google/palm-2-chat-bison",
messages=messages,
temperature=0.5,
top_p=0.1,
user="ishaan_dev@berri.ai",
)
# Add any assertions here to check the response
print(response)
except Exception as e:
@ -127,12 +165,23 @@ def test_completion_openrouter():
def test_completion_openai_with_more_optional_params():
try:
response = completion(model="gpt-3.5-turbo", messages=messages, temperature=0.5, top_p=0.1, n=2, max_tokens=150, presence_penalty=0.5, frequency_penalty=-0.5, logit_bias={123: 5}, user="ishaan_dev@berri.ai")
response = completion(
model="gpt-3.5-turbo",
messages=messages,
temperature=0.5,
top_p=0.1,
n=2,
max_tokens=150,
presence_penalty=0.5,
frequency_penalty=-0.5,
logit_bias={123: 5},
user="ishaan_dev@berri.ai",
)
# Add any assertions here to check the response
print(response)
response_str = response['choices'][0]['message']['content']
response_str = response["choices"][0]["message"]["content"]
response_str_2 = response.choices[0].message.content
print(response['choices'][0]['message']['content'])
print(response["choices"][0]["message"]["content"])
print(response.choices[0].message.content)
if type(response_str) != str:
pytest.fail(f"Error occurred: {e}")
@ -141,14 +190,28 @@ def test_completion_openai_with_more_optional_params():
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_openai_with_stream():
try:
response = completion(model="gpt-3.5-turbo", messages=messages, temperature=0.5, top_p=0.1, n=2, max_tokens=150, presence_penalty=0.5, stream=True, frequency_penalty=-0.5, logit_bias={27000: 5}, user="ishaan_dev@berri.ai")
response = completion(
model="gpt-3.5-turbo",
messages=messages,
temperature=0.5,
top_p=0.1,
n=2,
max_tokens=150,
presence_penalty=0.5,
stream=True,
frequency_penalty=-0.5,
logit_bias={27000: 5},
user="ishaan_dev@berri.ai",
)
# Add any assertions here to check the response
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_openai_with_functions():
function1 = [
{
@ -159,32 +222,38 @@ def test_completion_openai_with_functions():
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
"required": ["location"]
}
}
]
try:
response = completion(model="gpt-3.5-turbo", messages=messages, functions=function1)
response = completion(
model="gpt-3.5-turbo", messages=messages, functions=function1
)
# Add any assertions here to check the response
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_azure():
try:
response = completion(model="gpt-3.5-turbo", deployment_id="chatgpt-test", messages=messages, custom_llm_provider="azure")
response = completion(
model="gpt-3.5-turbo",
deployment_id="chatgpt-test",
messages=messages,
custom_llm_provider="azure",
)
# Add any assertions here to check the response
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# Replicate API endpoints are unstable -> throw random CUDA errors -> this means our tests can fail even if our tests weren't incorrect.
def test_completion_replicate_llama_stream():
model_name = "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
@ -197,23 +266,32 @@ def test_completion_replicate_llama_stream():
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_replicate_stability_stream():
model_name = "stability-ai/stablelm-tuned-alpha-7b:c49dae362cbaecd2ceabb5bd34fdb68413c4ff775111fea065d259d577757beb"
try:
response = completion(model=model_name, messages=messages, stream=True, custom_llm_provider="replicate")
response = completion(
model=model_name,
messages=messages,
stream=True,
custom_llm_provider="replicate",
)
# Add any assertions here to check the response
for chunk in response:
print(chunk['choices'][0]['delta'])
print(chunk["choices"][0]["delta"])
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_replicate_stability():
model_name = "stability-ai/stablelm-tuned-alpha-7b:c49dae362cbaecd2ceabb5bd34fdb68413c4ff775111fea065d259d577757beb"
try:
response = completion(model=model_name, messages=messages, custom_llm_provider="replicate")
response = completion(
model=model_name, messages=messages, custom_llm_provider="replicate"
)
# Add any assertions here to check the response
response_str = response['choices'][0]['message']['content']
response_str = response["choices"][0]["message"]["content"]
response_str_2 = response.choices[0].message.content
print(response_str)
print(response_str_2)
@ -224,6 +302,7 @@ def test_completion_replicate_stability():
except Exception as e:
pytest.fail(f"Error occurred: {e}")
######## Test TogetherAI ########
def test_completion_together_ai():
model_name = "togethercomputer/llama-2-70b-chat"
@ -234,15 +313,22 @@ def test_completion_together_ai():
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_petals():
model_name = "stabilityai/StableBeluga2"
try:
response = completion(model=model_name, messages=messages, custom_llm_provider="petals", force_timeout=120)
response = completion(
model=model_name,
messages=messages,
custom_llm_provider="petals",
force_timeout=120,
)
# Add any assertions here to check the response
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# def test_baseten_falcon_7bcompletion():
# model_name = "qvv0xeq"
# try:
@ -290,7 +376,6 @@ def test_petals():
# pytest.fail(f"Error occurred: {e}")
#### Test A121 ###################
# def test_completion_ai21():
# model_name = "j2-light"
@ -333,4 +418,3 @@ def test_petals():
# return
# test_completion_together_ai_stream()

View file

@ -1,14 +1,21 @@
import sys, os
import traceback
from dotenv import load_dotenv
load_dotenv()
import os
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import completion
def logging_fn(model_call_dict):
print(f"model call details: {model_call_dict}")
models = ["gorilla-7b-hf-v1", "gpt-4"]
custom_llm_provider = None
messages = [{"role": "user", "content": "Hey, how's it going?"}]
@ -17,4 +24,10 @@ for model in models: # iterate through list
if model == "gorilla-7b-hf-v1":
custom_llm_provider = "custom_openai"
custom_api_base = "http://zanino.millennium.berkeley.edu:8000/v1"
completion(model=model, messages=messages, custom_llm_provider=custom_llm_provider, custom_api_base=custom_api_base, logger_fn=logging_fn)
completion(
model=model,
messages=messages,
custom_llm_provider=custom_llm_provider,
custom_api_base=custom_api_base,
logger_fn=logging_fn,
)

View file

@ -1,9 +1,10 @@
import sys, os
import traceback
import pytest
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import embedding, completion
from infisical import InfisicalClient
@ -11,9 +12,12 @@ from infisical import InfisicalClient
# # litellm.set_verbose = True
# litellm.secret_manager_client = InfisicalClient(token=os.environ["INFISICAL_TOKEN"])
def test_openai_embedding():
try:
response = embedding(model='text-embedding-ada-002', input=["good morning from litellm"])
response = embedding(
model="text-embedding-ada-002", input=["good morning from litellm"]
)
# Add any assertions here to check the response
print(f"response: {str(response)}")
except Exception as e:

View file

@ -2,9 +2,20 @@
import os
import sys
import traceback
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import embedding, completion, AuthenticationError, InvalidRequestError, RateLimitError, ServiceUnavailableError, OpenAIError
from litellm import (
embedding,
completion,
AuthenticationError,
InvalidRequestError,
RateLimitError,
ServiceUnavailableError,
OpenAIError,
)
from concurrent.futures import ThreadPoolExecutor
import pytest
@ -23,6 +34,8 @@ litellm.failure_callback = ["sentry"]
# models = ["gpt-3.5-turbo", "chatgpt-test", "claude-instant-1", "command-nightly"]
test_model = "claude-instant-1"
models = ["claude-instant-1"]
def logging_fn(model_call_dict):
if "model" in model_call_dict:
print(f"model_call_dict: {model_call_dict['model']}")
@ -38,7 +51,12 @@ def test_context_window(model):
try:
model = "chatgpt-test"
print(f"model: {model}")
response = completion(model=model, messages=messages, custom_llm_provider="azure", logger_fn=logging_fn)
response = completion(
model=model,
messages=messages,
custom_llm_provider="azure",
logger_fn=logging_fn,
)
print(f"response: {response}")
except InvalidRequestError as e:
print(f"InvalidRequestError: {e.llm_provider}")
@ -52,12 +70,15 @@ def test_context_window(model):
print(f"Uncaught Exception - {e}")
pytest.fail(f"Error occurred: {e}")
return
test_context_window(test_model)
# Test 2: InvalidAuth Errors
@pytest.mark.parametrize("model", models)
def invalid_auth(model): # set the model key to an invalid key, depending on the model
messages = [{ "content": "Hello, how are you?","role": "user"}]
messages = [{"content": "Hello, how are you?", "role": "user"}]
temporary_key = None
try:
custom_llm_provider = None
@ -74,15 +95,22 @@ def invalid_auth(model): # set the model key to an invalid key, depending on the
elif model == "command-nightly":
temporary_key = os.environ["COHERE_API_KEY"]
os.environ["COHERE_API_KEY"] = "bad-key"
elif model == "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1":
elif (
model
== "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
):
temporary_key = os.environ["REPLICATE_API_KEY"]
os.environ["REPLICATE_API_KEY"] = "bad-key"
print(f"model: {model}")
response = completion(model=model, messages=messages, custom_llm_provider=custom_llm_provider)
response = completion(
model=model, messages=messages, custom_llm_provider=custom_llm_provider
)
print(f"response: {response}")
except AuthenticationError as e:
print(f"AuthenticationError Caught Exception - {e.llm_provider}")
except OpenAIError: # is at least an openai error -> in case of random model errors - e.g. overloaded server
except (
OpenAIError
): # is at least an openai error -> in case of random model errors - e.g. overloaded server
print(f"OpenAIError Caught Exception - {e}")
except Exception as e:
print(type(e))
@ -99,9 +127,14 @@ def invalid_auth(model): # set the model key to an invalid key, depending on the
os.environ["ANTHROPIC_API_KEY"] = temporary_key
elif model == "command-nightly":
os.environ["COHERE_API_KEY"] = temporary_key
elif model == "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1":
elif (
model
== "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
):
os.environ["REPLICATE_API_KEY"] = temporary_key
return
invalid_auth(test_model)
# # Test 3: Rate Limit Errors
# def test_model(model):
@ -142,5 +175,3 @@ invalid_auth(test_model)
# accuracy_score = counts[True]/(counts[True] + counts[False])
# print(f"accuracy_score: {accuracy_score}")

View file

@ -5,7 +5,9 @@ import sys, os
import traceback
import pytest
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import embedding, completion
@ -14,11 +16,15 @@ litellm.success_callback = ["helicone"]
litellm.set_verbose = True
user_message = "Hello, how are you?"
messages = [{ "content": user_message,"role": "user"}]
messages = [{"content": user_message, "role": "user"}]
#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])
# openai call
response = completion(
model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}]
)
#cohere call
response = completion(model="command-nightly", messages=[{"role": "user", "content": "Hi 👋 - i'm cohere"}])
# cohere call
response = completion(
model="command-nightly", messages=[{"role": "user", "content": "Hi 👋 - i'm cohere"}]
)

View file

@ -1,6 +1,9 @@
import sys, os
import traceback
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import load_test_model, testing_batch_completion
@ -16,7 +19,19 @@ from litellm import load_test_model, testing_batch_completion
# print(result)
## Quality Test across Model
models = ["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-4", "claude-instant-1", {"model": "replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781", "custom_llm_provider": "replicate"}]
messages = [[{"role": "user", "content": "What is your name?"}], [{"role": "user", "content": "Hey, how's it going?"}]]
models = [
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-4",
"claude-instant-1",
{
"model": "replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781",
"custom_llm_provider": "replicate",
},
]
messages = [
[{"role": "user", "content": "What is your name?"}],
[{"role": "user", "content": "Hey, how's it going?"}],
]
result = testing_batch_completion(models=models, messages=messages)
print(result)

View file

@ -3,7 +3,10 @@
import sys, os
import traceback
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import embedding, completion
@ -11,25 +14,29 @@ litellm.set_verbose = False
score = 0
def logger_fn(model_call_object: dict):
print(f"model call details: {model_call_object}")
user_message = "Hello, how are you?"
messages = [{ "content": user_message,"role": "user"}]
messages = [{"content": user_message, "role": "user"}]
# test on openai completion call
try:
response = completion(model="gpt-3.5-turbo", messages=messages, logger_fn=logger_fn)
score +=1
score += 1
except:
print(f"error occurred: {traceback.format_exc()}")
pass
# test on non-openai completion call
try:
response = completion(model="claude-instant-1", messages=messages, logger_fn=logger_fn)
response = completion(
model="claude-instant-1", messages=messages, logger_fn=logger_fn
)
print(f"claude response: {response}")
score +=1
score += 1
except:
print(f"error occurred: {traceback.format_exc()}")
pass

View file

@ -3,7 +3,10 @@
import sys, os
import traceback
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import embedding, completion
@ -15,7 +18,7 @@ litellm.set_verbose = True
model_fallback_list = ["claude-instant-1", "gpt-3.5-turbo", "chatgpt-test"]
user_message = "Hello, how are you?"
messages = [{ "content": user_message,"role": "user"}]
messages = [{"content": user_message, "role": "user"}]
for model in model_fallback_list:
try:

View file

@ -4,7 +4,10 @@
import sys, os
import traceback
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import embedding, completion
@ -13,7 +16,7 @@ litellm.set_verbose = True
model_fallback_list = ["claude-instant-1", "gpt-3.5-turbo", "chatgpt-test"]
user_message = "Hello, how are you?"
messages = [{ "content": user_message,"role": "user"}]
messages = [{"content": user_message, "role": "user"}]
for model in model_fallback_list:
try:

View file

@ -53,7 +53,6 @@
# # # return this generator to the client for streaming requests
# # async def get_response():
# # global generator
# # async for elem in generator:

View file

@ -12,7 +12,6 @@
# import asyncio
# user_message = "respond in 20 words. who are you?"
# messages = [{ "content": user_message,"role": "user"}]
@ -45,8 +44,3 @@
# pytest.fail(f"Error occurred: {e}")
# test_completion_ollama_stream()

View file

@ -4,7 +4,10 @@
import sys, os
import traceback
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import embedding, completion
from infisical import InfisicalClient
@ -15,7 +18,7 @@ infisical_token = os.environ["INFISICAL_TOKEN"]
litellm.secret_manager_client = InfisicalClient(token=infisical_token)
user_message = "Hello, whats the weather in San Francisco??"
messages = [{ "content": user_message,"role": "user"}]
messages = [{"content": user_message, "role": "user"}]
def test_completion_openai():
@ -28,5 +31,5 @@ def test_completion_openai():
pytest.fail(f"Error occurred: {e}")
litellm.secret_manager_client = None
test_completion_openai()
test_completion_openai()

View file

@ -3,7 +3,10 @@
import sys, os
import traceback
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import completion
@ -11,18 +14,22 @@ litellm.set_verbose = False
score = 0
def logger_fn(model_call_object: dict):
print(f"model call details: {model_call_object}")
user_message = "Hello, how are you?"
messages = [{ "content": user_message,"role": "user"}]
messages = [{"content": user_message, "role": "user"}]
# test on anthropic completion call
try:
response = completion(model="claude-instant-1", messages=messages, stream=True, logger_fn=logger_fn)
response = completion(
model="claude-instant-1", messages=messages, stream=True, logger_fn=logger_fn
)
for chunk in response:
print(chunk['choices'][0]['delta'])
score +=1
print(chunk["choices"][0]["delta"])
score += 1
except:
print(f"error occurred: {traceback.format_exc()}")
pass
@ -30,10 +37,17 @@ except:
# test on anthropic completion call
try:
response = completion(model="meta-llama/Llama-2-7b-chat-hf", messages=messages, custom_llm_provider="huggingface", custom_api_base="https://s7c7gytn18vnu4tw.us-east-1.aws.endpoints.huggingface.cloud", stream=True, logger_fn=logger_fn)
response = completion(
model="meta-llama/Llama-2-7b-chat-hf",
messages=messages,
custom_llm_provider="huggingface",
custom_api_base="https://s7c7gytn18vnu4tw.us-east-1.aws.endpoints.huggingface.cloud",
stream=True,
logger_fn=logger_fn,
)
for chunk in response:
print(chunk['choices'][0]['delta'])
score +=1
print(chunk["choices"][0]["delta"])
score += 1
except:
print(f"error occurred: {traceback.format_exc()}")
pass

View file

@ -3,10 +3,14 @@
import sys, os
import traceback
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import time
from litellm import timeout
@timeout(10)
def stop_after_10_s(force_timeout=60):
print("Stopping after 10 seconds")

View file

@ -11,9 +11,7 @@ from threading import Thread
from openai.error import Timeout
def timeout(
timeout_duration: float = None, exception_to_raise = Timeout
):
def timeout(timeout_duration: float = None, exception_to_raise=Timeout):
"""
Wraps a function to raise the specified exception if execution time
is greater than the specified timeout.
@ -44,7 +42,9 @@ def timeout(
result = future.result(timeout=local_timeout_duration)
except futures.TimeoutError:
thread.stop_loop()
raise exception_to_raise(f"A timeout error occurred. The function call took longer than {local_timeout_duration} second(s).")
raise exception_to_raise(
f"A timeout error occurred. The function call took longer than {local_timeout_duration} second(s)."
)
thread.stop_loop()
return result
@ -59,7 +59,9 @@ def timeout(
)
return value
except asyncio.TimeoutError:
raise exception_to_raise(f"A timeout error occurred. The function call took longer than {local_timeout_duration} second(s).")
raise exception_to_raise(
f"A timeout error occurred. The function call took longer than {local_timeout_duration} second(s)."
)
if iscoroutinefunction(func):
return async_wrapper

File diff suppressed because it is too large Load diff