mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
add linting
This commit is contained in:
parent
fa108c998d
commit
2c7ffb7c75
40 changed files with 3110 additions and 1709 deletions
|
@ -1,8 +1,9 @@
|
|||
import threading
|
||||
|
||||
success_callback = []
|
||||
failure_callback = []
|
||||
set_verbose=False
|
||||
telemetry=True
|
||||
set_verbose = False
|
||||
telemetry = True
|
||||
max_tokens = 256 # OpenAI Defaults
|
||||
retry = True
|
||||
api_key = None
|
||||
|
@ -19,33 +20,99 @@ caching = False
|
|||
hugging_api_token = None
|
||||
togetherai_api_key = None
|
||||
model_cost = {
|
||||
"gpt-3.5-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
|
||||
"gpt-35-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002}, # azure model name
|
||||
"gpt-3.5-turbo-0613": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
|
||||
"gpt-3.5-turbo-0301": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
|
||||
"gpt-3.5-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
|
||||
"gpt-35-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004}, # azure model name
|
||||
"gpt-3.5-turbo-16k-0613": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
|
||||
"gpt-4": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
|
||||
"gpt-4-0613": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
|
||||
"gpt-4-32k": {"max_tokens": 8000, "input_cost_per_token": 0.00006, "output_cost_per_token": 0.00012},
|
||||
"claude-instant-1": {"max_tokens": 100000, "input_cost_per_token": 0.00000163, "output_cost_per_token": 0.00000551},
|
||||
"claude-2": {"max_tokens": 100000, "input_cost_per_token": 0.00001102, "output_cost_per_token": 0.00003268},
|
||||
"text-bison-001": {"max_tokens": 8192, "input_cost_per_token": 0.000004, "output_cost_per_token": 0.000004},
|
||||
"chat-bison-001": {"max_tokens": 4096, "input_cost_per_token": 0.000002, "output_cost_per_token": 0.000002},
|
||||
"command-nightly": {"max_tokens": 4096, "input_cost_per_token": 0.000015, "output_cost_per_token": 0.000015},
|
||||
"gpt-3.5-turbo": {
|
||||
"max_tokens": 4000,
|
||||
"input_cost_per_token": 0.0000015,
|
||||
"output_cost_per_token": 0.000002,
|
||||
},
|
||||
"gpt-35-turbo": {
|
||||
"max_tokens": 4000,
|
||||
"input_cost_per_token": 0.0000015,
|
||||
"output_cost_per_token": 0.000002,
|
||||
}, # azure model name
|
||||
"gpt-3.5-turbo-0613": {
|
||||
"max_tokens": 4000,
|
||||
"input_cost_per_token": 0.0000015,
|
||||
"output_cost_per_token": 0.000002,
|
||||
},
|
||||
"gpt-3.5-turbo-0301": {
|
||||
"max_tokens": 4000,
|
||||
"input_cost_per_token": 0.0000015,
|
||||
"output_cost_per_token": 0.000002,
|
||||
},
|
||||
"gpt-3.5-turbo-16k": {
|
||||
"max_tokens": 16000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.000004,
|
||||
},
|
||||
"gpt-35-turbo-16k": {
|
||||
"max_tokens": 16000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.000004,
|
||||
}, # azure model name
|
||||
"gpt-3.5-turbo-16k-0613": {
|
||||
"max_tokens": 16000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.000004,
|
||||
},
|
||||
"gpt-4": {
|
||||
"max_tokens": 8000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.00006,
|
||||
},
|
||||
"gpt-4-0613": {
|
||||
"max_tokens": 8000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.00006,
|
||||
},
|
||||
"gpt-4-32k": {
|
||||
"max_tokens": 8000,
|
||||
"input_cost_per_token": 0.00006,
|
||||
"output_cost_per_token": 0.00012,
|
||||
},
|
||||
"claude-instant-1": {
|
||||
"max_tokens": 100000,
|
||||
"input_cost_per_token": 0.00000163,
|
||||
"output_cost_per_token": 0.00000551,
|
||||
},
|
||||
"claude-2": {
|
||||
"max_tokens": 100000,
|
||||
"input_cost_per_token": 0.00001102,
|
||||
"output_cost_per_token": 0.00003268,
|
||||
},
|
||||
"text-bison-001": {
|
||||
"max_tokens": 8192,
|
||||
"input_cost_per_token": 0.000004,
|
||||
"output_cost_per_token": 0.000004,
|
||||
},
|
||||
"chat-bison-001": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000002,
|
||||
"output_cost_per_token": 0.000002,
|
||||
},
|
||||
"command-nightly": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000015,
|
||||
"output_cost_per_token": 0.000015,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
####### THREAD-SPECIFIC DATA ###################
|
||||
class MyLocal(threading.local):
|
||||
def __init__(self):
|
||||
self.user = "Hello World"
|
||||
|
||||
|
||||
_thread_context = MyLocal()
|
||||
|
||||
|
||||
def identify(event_details):
|
||||
# Store user in thread local data
|
||||
if "user" in event_details:
|
||||
_thread_context.user = event_details["user"]
|
||||
|
||||
|
||||
####### ADDITIONAL PARAMS ################### configurable params if you use proxy models like Helicone, map spend to org id, etc.
|
||||
api_base = None
|
||||
headers = None
|
||||
|
@ -66,50 +133,38 @@ open_ai_chat_completion_models = [
|
|||
"gpt-3.5-turbo-0613",
|
||||
"gpt-3.5-turbo-16k-0613",
|
||||
]
|
||||
open_ai_text_completion_models = [
|
||||
'text-davinci-003'
|
||||
]
|
||||
open_ai_text_completion_models = ["text-davinci-003"]
|
||||
|
||||
cohere_models = [
|
||||
'command-nightly',
|
||||
"command-nightly",
|
||||
"command",
|
||||
"command-light",
|
||||
"command-medium-beta",
|
||||
"command-xlarge-beta"
|
||||
"command-xlarge-beta",
|
||||
]
|
||||
|
||||
anthropic_models = [
|
||||
"claude-2",
|
||||
"claude-instant-1",
|
||||
"claude-instant-1.2"
|
||||
]
|
||||
anthropic_models = ["claude-2", "claude-instant-1", "claude-instant-1.2"]
|
||||
|
||||
replicate_models = [
|
||||
"replicate/"
|
||||
] # placeholder, to make sure we accept any replicate model in our model_list
|
||||
|
||||
openrouter_models = [
|
||||
'google/palm-2-codechat-bison',
|
||||
'google/palm-2-chat-bison',
|
||||
'openai/gpt-3.5-turbo',
|
||||
'openai/gpt-3.5-turbo-16k',
|
||||
'openai/gpt-4-32k',
|
||||
'anthropic/claude-2',
|
||||
'anthropic/claude-instant-v1',
|
||||
'meta-llama/llama-2-13b-chat',
|
||||
'meta-llama/llama-2-70b-chat'
|
||||
"google/palm-2-codechat-bison",
|
||||
"google/palm-2-chat-bison",
|
||||
"openai/gpt-3.5-turbo",
|
||||
"openai/gpt-3.5-turbo-16k",
|
||||
"openai/gpt-4-32k",
|
||||
"anthropic/claude-2",
|
||||
"anthropic/claude-instant-v1",
|
||||
"meta-llama/llama-2-13b-chat",
|
||||
"meta-llama/llama-2-70b-chat",
|
||||
]
|
||||
|
||||
vertex_chat_models = [
|
||||
"chat-bison",
|
||||
"chat-bison@001"
|
||||
]
|
||||
vertex_chat_models = ["chat-bison", "chat-bison@001"]
|
||||
|
||||
|
||||
vertex_text_models = [
|
||||
"text-bison",
|
||||
"text-bison@001"
|
||||
]
|
||||
vertex_text_models = ["text-bison", "text-bison@001"]
|
||||
|
||||
huggingface_models = [
|
||||
"meta-llama/Llama-2-7b-hf",
|
||||
|
@ -126,23 +181,54 @@ huggingface_models = [
|
|||
"meta-llama/Llama-2-70b-chat",
|
||||
] # these have been tested on extensively. But by default all text2text-generation and text-generation models are supported by liteLLM. - https://docs.litellm.ai/docs/completion/supported
|
||||
|
||||
ai21_models = [
|
||||
"j2-ultra",
|
||||
"j2-mid",
|
||||
"j2-light"
|
||||
ai21_models = ["j2-ultra", "j2-mid", "j2-light"]
|
||||
|
||||
model_list = (
|
||||
open_ai_chat_completion_models
|
||||
+ open_ai_text_completion_models
|
||||
+ cohere_models
|
||||
+ anthropic_models
|
||||
+ replicate_models
|
||||
+ openrouter_models
|
||||
+ huggingface_models
|
||||
+ vertex_chat_models
|
||||
+ vertex_text_models
|
||||
+ ai21_models
|
||||
)
|
||||
|
||||
provider_list = [
|
||||
"openai",
|
||||
"cohere",
|
||||
"anthropic",
|
||||
"replicate",
|
||||
"huggingface",
|
||||
"together_ai",
|
||||
"openrouter",
|
||||
"vertex_ai",
|
||||
"ai21",
|
||||
]
|
||||
|
||||
model_list = open_ai_chat_completion_models + open_ai_text_completion_models + cohere_models + anthropic_models + replicate_models + openrouter_models + huggingface_models + vertex_chat_models + vertex_text_models + ai21_models
|
||||
|
||||
provider_list = ["openai", "cohere", "anthropic", "replicate", "huggingface", "together_ai", "openrouter", "vertex_ai", "ai21"]
|
||||
####### EMBEDDING MODELS ###################
|
||||
open_ai_embedding_models = [
|
||||
'text-embedding-ada-002'
|
||||
]
|
||||
open_ai_embedding_models = ["text-embedding-ada-002"]
|
||||
|
||||
from .timeout import timeout
|
||||
from .testing import *
|
||||
from .utils import client, logging, exception_type, get_optional_params, modify_integration, token_counter, cost_per_token, completion_cost, get_litellm_params
|
||||
from .utils import (
|
||||
client,
|
||||
logging,
|
||||
exception_type,
|
||||
get_optional_params,
|
||||
modify_integration,
|
||||
token_counter,
|
||||
cost_per_token,
|
||||
completion_cost,
|
||||
get_litellm_params,
|
||||
)
|
||||
from .main import * # Import all the symbols from main.py
|
||||
from .integrations import *
|
||||
from openai.error import AuthenticationError, InvalidRequestError, RateLimitError, ServiceUnavailableError, OpenAIError
|
||||
from openai.error import (
|
||||
AuthenticationError,
|
||||
InvalidRequestError,
|
||||
RateLimitError,
|
||||
ServiceUnavailableError,
|
||||
OpenAIError,
|
||||
)
|
||||
|
|
|
@ -1,12 +1,21 @@
|
|||
## LiteLLM versions of the OpenAI Exception Types
|
||||
from openai.error import AuthenticationError, InvalidRequestError, RateLimitError, ServiceUnavailableError, OpenAIError
|
||||
from openai.error import (
|
||||
AuthenticationError,
|
||||
InvalidRequestError,
|
||||
RateLimitError,
|
||||
ServiceUnavailableError,
|
||||
OpenAIError,
|
||||
)
|
||||
|
||||
|
||||
class AuthenticationError(AuthenticationError):
|
||||
def __init__(self, message, llm_provider):
|
||||
self.status_code = 401
|
||||
self.message = message
|
||||
self.llm_provider = llm_provider
|
||||
super().__init__(self.message) # Call the base class constructor with the parameters it needs
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class InvalidRequestError(InvalidRequestError):
|
||||
|
@ -15,7 +24,9 @@ class InvalidRequestError(InvalidRequestError):
|
|||
self.message = message
|
||||
self.model = model
|
||||
self.llm_provider = llm_provider
|
||||
super().__init__(self.message, f"{self.model}") # Call the base class constructor with the parameters it needs
|
||||
super().__init__(
|
||||
self.message, f"{self.model}"
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class RateLimitError(RateLimitError):
|
||||
|
@ -23,21 +34,29 @@ class RateLimitError(RateLimitError):
|
|||
self.status_code = 429
|
||||
self.message = message
|
||||
self.llm_provider = llm_provider
|
||||
super().__init__(self.message) # Call the base class constructor with the parameters it needs
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class ServiceUnavailableError(ServiceUnavailableError):
|
||||
def __init__(self, message, llm_provider):
|
||||
self.status_code = 500
|
||||
self.message = message
|
||||
self.llm_provider = llm_provider
|
||||
super().__init__(self.message) # Call the base class constructor with the parameters it needs
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class OpenAIError(OpenAIError):
|
||||
def __init__(self, original_exception):
|
||||
self.status_code = original_exception.http_status
|
||||
super().__init__(http_body=original_exception.http_body,
|
||||
super().__init__(
|
||||
http_body=original_exception.http_body,
|
||||
http_status=original_exception.http_status,
|
||||
json_body=original_exception.json_body,
|
||||
headers=original_exception.headers,
|
||||
code=original_exception.code)
|
||||
code=original_exception.code,
|
||||
)
|
||||
self.llm_provider = "openai"
|
|
@ -2,28 +2,90 @@
|
|||
# On success + failure, log events to aispend.io
|
||||
import dotenv, os
|
||||
import requests
|
||||
|
||||
dotenv.load_dotenv() # Loading env variables using dotenv
|
||||
import traceback
|
||||
import datetime
|
||||
|
||||
model_cost = {
|
||||
"gpt-3.5-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
|
||||
"gpt-35-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002}, # azure model name
|
||||
"gpt-3.5-turbo-0613": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
|
||||
"gpt-3.5-turbo-0301": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
|
||||
"gpt-3.5-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
|
||||
"gpt-35-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004}, # azure model name
|
||||
"gpt-3.5-turbo-16k-0613": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
|
||||
"gpt-4": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
|
||||
"gpt-4-0613": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
|
||||
"gpt-4-32k": {"max_tokens": 8000, "input_cost_per_token": 0.00006, "output_cost_per_token": 0.00012},
|
||||
"claude-instant-1": {"max_tokens": 100000, "input_cost_per_token": 0.00000163, "output_cost_per_token": 0.00000551},
|
||||
"claude-2": {"max_tokens": 100000, "input_cost_per_token": 0.00001102, "output_cost_per_token": 0.00003268},
|
||||
"text-bison-001": {"max_tokens": 8192, "input_cost_per_token": 0.000004, "output_cost_per_token": 0.000004},
|
||||
"chat-bison-001": {"max_tokens": 4096, "input_cost_per_token": 0.000002, "output_cost_per_token": 0.000002},
|
||||
"command-nightly": {"max_tokens": 4096, "input_cost_per_token": 0.000015, "output_cost_per_token": 0.000015},
|
||||
"gpt-3.5-turbo": {
|
||||
"max_tokens": 4000,
|
||||
"input_cost_per_token": 0.0000015,
|
||||
"output_cost_per_token": 0.000002,
|
||||
},
|
||||
"gpt-35-turbo": {
|
||||
"max_tokens": 4000,
|
||||
"input_cost_per_token": 0.0000015,
|
||||
"output_cost_per_token": 0.000002,
|
||||
}, # azure model name
|
||||
"gpt-3.5-turbo-0613": {
|
||||
"max_tokens": 4000,
|
||||
"input_cost_per_token": 0.0000015,
|
||||
"output_cost_per_token": 0.000002,
|
||||
},
|
||||
"gpt-3.5-turbo-0301": {
|
||||
"max_tokens": 4000,
|
||||
"input_cost_per_token": 0.0000015,
|
||||
"output_cost_per_token": 0.000002,
|
||||
},
|
||||
"gpt-3.5-turbo-16k": {
|
||||
"max_tokens": 16000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.000004,
|
||||
},
|
||||
"gpt-35-turbo-16k": {
|
||||
"max_tokens": 16000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.000004,
|
||||
}, # azure model name
|
||||
"gpt-3.5-turbo-16k-0613": {
|
||||
"max_tokens": 16000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.000004,
|
||||
},
|
||||
"gpt-4": {
|
||||
"max_tokens": 8000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.00006,
|
||||
},
|
||||
"gpt-4-0613": {
|
||||
"max_tokens": 8000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.00006,
|
||||
},
|
||||
"gpt-4-32k": {
|
||||
"max_tokens": 8000,
|
||||
"input_cost_per_token": 0.00006,
|
||||
"output_cost_per_token": 0.00012,
|
||||
},
|
||||
"claude-instant-1": {
|
||||
"max_tokens": 100000,
|
||||
"input_cost_per_token": 0.00000163,
|
||||
"output_cost_per_token": 0.00000551,
|
||||
},
|
||||
"claude-2": {
|
||||
"max_tokens": 100000,
|
||||
"input_cost_per_token": 0.00001102,
|
||||
"output_cost_per_token": 0.00003268,
|
||||
},
|
||||
"text-bison-001": {
|
||||
"max_tokens": 8192,
|
||||
"input_cost_per_token": 0.000004,
|
||||
"output_cost_per_token": 0.000004,
|
||||
},
|
||||
"chat-bison-001": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000002,
|
||||
"output_cost_per_token": 0.000002,
|
||||
},
|
||||
"command-nightly": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000015,
|
||||
"output_cost_per_token": 0.000015,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
class AISpendLogger:
|
||||
# Class variables or attributes
|
||||
def __init__(self):
|
||||
|
@ -37,8 +99,14 @@ class AISpendLogger:
|
|||
prompt_tokens_cost_usd_dollar = 0
|
||||
completion_tokens_cost_usd_dollar = 0
|
||||
if model in model_cost:
|
||||
prompt_tokens_cost_usd_dollar = model_cost[model]["input_cost_per_token"] * response_obj["usage"]["prompt_tokens"]
|
||||
completion_tokens_cost_usd_dollar = model_cost[model]["output_cost_per_token"] * response_obj["usage"]["completion_tokens"]
|
||||
prompt_tokens_cost_usd_dollar = (
|
||||
model_cost[model]["input_cost_per_token"]
|
||||
* response_obj["usage"]["prompt_tokens"]
|
||||
)
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_cost[model]["output_cost_per_token"]
|
||||
* response_obj["usage"]["completion_tokens"]
|
||||
)
|
||||
elif "replicate" in model:
|
||||
# replicate models are charged based on time
|
||||
# llama 2 runs on an nvidia a100 which costs $0.0032 per second - https://replicate.com/replicate/llama-2-70b-chat
|
||||
|
@ -55,27 +123,41 @@ class AISpendLogger:
|
|||
output_cost_sum += model_cost[model]["output_cost_per_token"]
|
||||
avg_input_cost = input_cost_sum / len(model_cost.keys())
|
||||
avg_output_cost = output_cost_sum / len(model_cost.keys())
|
||||
prompt_tokens_cost_usd_dollar = model_cost[model]["input_cost_per_token"] * response_obj["usage"]["prompt_tokens"]
|
||||
completion_tokens_cost_usd_dollar = model_cost[model]["output_cost_per_token"] * response_obj["usage"]["completion_tokens"]
|
||||
prompt_tokens_cost_usd_dollar = (
|
||||
model_cost[model]["input_cost_per_token"]
|
||||
* response_obj["usage"]["prompt_tokens"]
|
||||
)
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_cost[model]["output_cost_per_token"]
|
||||
* response_obj["usage"]["completion_tokens"]
|
||||
)
|
||||
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
|
||||
|
||||
def log_event(self, model, response_obj, start_time, end_time, print_verbose):
|
||||
# Method definition
|
||||
try:
|
||||
print_verbose(f"AISpend Logging - Enters logging function for model {model}")
|
||||
print_verbose(
|
||||
f"AISpend Logging - Enters logging function for model {model}"
|
||||
)
|
||||
|
||||
url = f"https://aispend.io/api/v1/accounts/{self.account_id}/data"
|
||||
headers = {
|
||||
'Authorization': f'Bearer {self.api_key}',
|
||||
'Content-Type': 'application/json'
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
response_timestamp = datetime.datetime.fromtimestamp(int(response_obj["created"])).strftime('%Y-%m-%d')
|
||||
response_timestamp = datetime.datetime.fromtimestamp(
|
||||
int(response_obj["created"])
|
||||
).strftime("%Y-%m-%d")
|
||||
|
||||
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = self.price_calculator(model, response_obj, start_time, end_time)
|
||||
(
|
||||
prompt_tokens_cost_usd_dollar,
|
||||
completion_tokens_cost_usd_dollar,
|
||||
) = self.price_calculator(model, response_obj, start_time, end_time)
|
||||
prompt_tokens_cost_usd_cent = prompt_tokens_cost_usd_dollar * 100
|
||||
completion_tokens_cost_usd_cent = completion_tokens_cost_usd_dollar * 100
|
||||
data = [{
|
||||
data = [
|
||||
{
|
||||
"requests": 1,
|
||||
"requests_context": 1,
|
||||
"context_tokens": response_obj["usage"]["prompt_tokens"],
|
||||
|
@ -84,8 +166,9 @@ class AISpendLogger:
|
|||
"recorded_date": response_timestamp,
|
||||
"model_id": response_obj["model"],
|
||||
"generated_tokens_cost_usd_cent": prompt_tokens_cost_usd_cent,
|
||||
"context_tokens_cost_usd_cent": completion_tokens_cost_usd_cent
|
||||
}]
|
||||
"context_tokens_cost_usd_cent": completion_tokens_cost_usd_cent,
|
||||
}
|
||||
]
|
||||
|
||||
print_verbose(f"AISpend Logging - final data object: {data}")
|
||||
except:
|
||||
|
|
|
@ -2,28 +2,90 @@
|
|||
# On success + failure, log events to aispend.io
|
||||
import dotenv, os
|
||||
import requests
|
||||
|
||||
dotenv.load_dotenv() # Loading env variables using dotenv
|
||||
import traceback
|
||||
import datetime
|
||||
|
||||
model_cost = {
|
||||
"gpt-3.5-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
|
||||
"gpt-35-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002}, # azure model name
|
||||
"gpt-3.5-turbo-0613": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
|
||||
"gpt-3.5-turbo-0301": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
|
||||
"gpt-3.5-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
|
||||
"gpt-35-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004}, # azure model name
|
||||
"gpt-3.5-turbo-16k-0613": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
|
||||
"gpt-4": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
|
||||
"gpt-4-0613": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
|
||||
"gpt-4-32k": {"max_tokens": 8000, "input_cost_per_token": 0.00006, "output_cost_per_token": 0.00012},
|
||||
"claude-instant-1": {"max_tokens": 100000, "input_cost_per_token": 0.00000163, "output_cost_per_token": 0.00000551},
|
||||
"claude-2": {"max_tokens": 100000, "input_cost_per_token": 0.00001102, "output_cost_per_token": 0.00003268},
|
||||
"text-bison-001": {"max_tokens": 8192, "input_cost_per_token": 0.000004, "output_cost_per_token": 0.000004},
|
||||
"chat-bison-001": {"max_tokens": 4096, "input_cost_per_token": 0.000002, "output_cost_per_token": 0.000002},
|
||||
"command-nightly": {"max_tokens": 4096, "input_cost_per_token": 0.000015, "output_cost_per_token": 0.000015},
|
||||
"gpt-3.5-turbo": {
|
||||
"max_tokens": 4000,
|
||||
"input_cost_per_token": 0.0000015,
|
||||
"output_cost_per_token": 0.000002,
|
||||
},
|
||||
"gpt-35-turbo": {
|
||||
"max_tokens": 4000,
|
||||
"input_cost_per_token": 0.0000015,
|
||||
"output_cost_per_token": 0.000002,
|
||||
}, # azure model name
|
||||
"gpt-3.5-turbo-0613": {
|
||||
"max_tokens": 4000,
|
||||
"input_cost_per_token": 0.0000015,
|
||||
"output_cost_per_token": 0.000002,
|
||||
},
|
||||
"gpt-3.5-turbo-0301": {
|
||||
"max_tokens": 4000,
|
||||
"input_cost_per_token": 0.0000015,
|
||||
"output_cost_per_token": 0.000002,
|
||||
},
|
||||
"gpt-3.5-turbo-16k": {
|
||||
"max_tokens": 16000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.000004,
|
||||
},
|
||||
"gpt-35-turbo-16k": {
|
||||
"max_tokens": 16000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.000004,
|
||||
}, # azure model name
|
||||
"gpt-3.5-turbo-16k-0613": {
|
||||
"max_tokens": 16000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.000004,
|
||||
},
|
||||
"gpt-4": {
|
||||
"max_tokens": 8000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.00006,
|
||||
},
|
||||
"gpt-4-0613": {
|
||||
"max_tokens": 8000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.00006,
|
||||
},
|
||||
"gpt-4-32k": {
|
||||
"max_tokens": 8000,
|
||||
"input_cost_per_token": 0.00006,
|
||||
"output_cost_per_token": 0.00012,
|
||||
},
|
||||
"claude-instant-1": {
|
||||
"max_tokens": 100000,
|
||||
"input_cost_per_token": 0.00000163,
|
||||
"output_cost_per_token": 0.00000551,
|
||||
},
|
||||
"claude-2": {
|
||||
"max_tokens": 100000,
|
||||
"input_cost_per_token": 0.00001102,
|
||||
"output_cost_per_token": 0.00003268,
|
||||
},
|
||||
"text-bison-001": {
|
||||
"max_tokens": 8192,
|
||||
"input_cost_per_token": 0.000004,
|
||||
"output_cost_per_token": 0.000004,
|
||||
},
|
||||
"chat-bison-001": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000002,
|
||||
"output_cost_per_token": 0.000002,
|
||||
},
|
||||
"command-nightly": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000015,
|
||||
"output_cost_per_token": 0.000015,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
class BerriSpendLogger:
|
||||
# Class variables or attributes
|
||||
def __init__(self):
|
||||
|
@ -36,8 +98,14 @@ class BerriSpendLogger:
|
|||
prompt_tokens_cost_usd_dollar = 0
|
||||
completion_tokens_cost_usd_dollar = 0
|
||||
if model in model_cost:
|
||||
prompt_tokens_cost_usd_dollar = model_cost[model]["input_cost_per_token"] * response_obj["usage"]["prompt_tokens"]
|
||||
completion_tokens_cost_usd_dollar = model_cost[model]["output_cost_per_token"] * response_obj["usage"]["completion_tokens"]
|
||||
prompt_tokens_cost_usd_dollar = (
|
||||
model_cost[model]["input_cost_per_token"]
|
||||
* response_obj["usage"]["prompt_tokens"]
|
||||
)
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_cost[model]["output_cost_per_token"]
|
||||
* response_obj["usage"]["completion_tokens"]
|
||||
)
|
||||
elif "replicate" in model:
|
||||
# replicate models are charged based on time
|
||||
# llama 2 runs on an nvidia a100 which costs $0.0032 per second - https://replicate.com/replicate/llama-2-70b-chat
|
||||
|
@ -54,42 +122,59 @@ class BerriSpendLogger:
|
|||
output_cost_sum += model_cost[model]["output_cost_per_token"]
|
||||
avg_input_cost = input_cost_sum / len(model_cost.keys())
|
||||
avg_output_cost = output_cost_sum / len(model_cost.keys())
|
||||
prompt_tokens_cost_usd_dollar = model_cost[model]["input_cost_per_token"] * response_obj["usage"]["prompt_tokens"]
|
||||
completion_tokens_cost_usd_dollar = model_cost[model]["output_cost_per_token"] * response_obj["usage"]["completion_tokens"]
|
||||
prompt_tokens_cost_usd_dollar = (
|
||||
model_cost[model]["input_cost_per_token"]
|
||||
* response_obj["usage"]["prompt_tokens"]
|
||||
)
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_cost[model]["output_cost_per_token"]
|
||||
* response_obj["usage"]["completion_tokens"]
|
||||
)
|
||||
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
|
||||
|
||||
def log_event(self, model, messages, response_obj, start_time, end_time, print_verbose):
|
||||
def log_event(
|
||||
self, model, messages, response_obj, start_time, end_time, print_verbose
|
||||
):
|
||||
# Method definition
|
||||
try:
|
||||
print_verbose(f"BerriSpend Logging - Enters logging function for model {model}")
|
||||
print_verbose(
|
||||
f"BerriSpend Logging - Enters logging function for model {model}"
|
||||
)
|
||||
|
||||
url = f"https://berrispend.berri.ai/spend"
|
||||
headers = {
|
||||
'Content-Type': 'application/json'
|
||||
}
|
||||
headers = {"Content-Type": "application/json"}
|
||||
|
||||
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = self.price_calculator(model, response_obj, start_time, end_time)
|
||||
total_cost = prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
|
||||
(
|
||||
prompt_tokens_cost_usd_dollar,
|
||||
completion_tokens_cost_usd_dollar,
|
||||
) = self.price_calculator(model, response_obj, start_time, end_time)
|
||||
total_cost = (
|
||||
prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
|
||||
)
|
||||
|
||||
response_time = (end_time-start_time).total_seconds()
|
||||
response_time = (end_time - start_time).total_seconds()
|
||||
if "response" in response_obj:
|
||||
data = [{
|
||||
data = [
|
||||
{
|
||||
"response_time": response_time,
|
||||
"model_id": response_obj["model"],
|
||||
"total_cost": total_cost,
|
||||
"messages": messages,
|
||||
"response": response_obj['choices'][0]['message']['content'],
|
||||
"account_id": self.account_id
|
||||
}]
|
||||
"response": response_obj["choices"][0]["message"]["content"],
|
||||
"account_id": self.account_id,
|
||||
}
|
||||
]
|
||||
elif "error" in response_obj:
|
||||
data = [{
|
||||
data = [
|
||||
{
|
||||
"response_time": response_time,
|
||||
"model_id": response_obj["model"],
|
||||
"total_cost": total_cost,
|
||||
"messages": messages,
|
||||
"error": response_obj['error'],
|
||||
"account_id": self.account_id
|
||||
}]
|
||||
"error": response_obj["error"],
|
||||
"account_id": self.account_id,
|
||||
}
|
||||
]
|
||||
|
||||
print_verbose(f"BerriSpend Logging - final data object: {data}")
|
||||
response = requests.post(url, headers=headers, json=data)
|
||||
|
|
|
@ -2,18 +2,23 @@
|
|||
# On success, logs events to Helicone
|
||||
import dotenv, os
|
||||
import requests
|
||||
|
||||
dotenv.load_dotenv() # Loading env variables using dotenv
|
||||
import traceback
|
||||
|
||||
|
||||
class HeliconeLogger:
|
||||
# Class variables or attributes
|
||||
helicone_model_list = ["gpt", "claude"]
|
||||
|
||||
def __init__(self):
|
||||
# Instance variables
|
||||
self.provider_url = "https://api.openai.com/v1"
|
||||
self.key = os.getenv('HELICONE_API_KEY')
|
||||
self.key = os.getenv("HELICONE_API_KEY")
|
||||
|
||||
def claude_mapping(self, model, messages, response_obj):
|
||||
from anthropic import HUMAN_PROMPT, AI_PROMPT
|
||||
|
||||
prompt = f"{HUMAN_PROMPT}"
|
||||
for message in messages:
|
||||
if "role" in message:
|
||||
|
@ -26,46 +31,82 @@ class HeliconeLogger:
|
|||
prompt += f"{AI_PROMPT}"
|
||||
claude_provider_request = {"model": model, "prompt": prompt}
|
||||
|
||||
claude_response_obj = {"completion": response_obj['choices'][0]['message']['content'], "model": model, "stop_reason": "stop_sequence"}
|
||||
claude_response_obj = {
|
||||
"completion": response_obj["choices"][0]["message"]["content"],
|
||||
"model": model,
|
||||
"stop_reason": "stop_sequence",
|
||||
}
|
||||
|
||||
return claude_provider_request, claude_response_obj
|
||||
|
||||
def log_success(self, model, messages, response_obj, start_time, end_time, print_verbose):
|
||||
def log_success(
|
||||
self, model, messages, response_obj, start_time, end_time, print_verbose
|
||||
):
|
||||
# Method definition
|
||||
try:
|
||||
print_verbose(f"Helicone Logging - Enters logging function for model {model}")
|
||||
model = model if any(accepted_model in model for accepted_model in self.helicone_model_list) else "gpt-3.5-turbo"
|
||||
print_verbose(
|
||||
f"Helicone Logging - Enters logging function for model {model}"
|
||||
)
|
||||
model = (
|
||||
model
|
||||
if any(
|
||||
accepted_model in model
|
||||
for accepted_model in self.helicone_model_list
|
||||
)
|
||||
else "gpt-3.5-turbo"
|
||||
)
|
||||
provider_request = {"model": model, "messages": messages}
|
||||
|
||||
if "claude" in model:
|
||||
provider_request, response_obj = self.claude_mapping(model=model, messages=messages, response_obj=response_obj)
|
||||
provider_request, response_obj = self.claude_mapping(
|
||||
model=model, messages=messages, response_obj=response_obj
|
||||
)
|
||||
|
||||
providerResponse = {
|
||||
"json": response_obj,
|
||||
"headers": {"openai-version": "2020-10-01"},
|
||||
"status": 200
|
||||
"status": 200,
|
||||
}
|
||||
|
||||
# Code to be executed
|
||||
url = "https://api.hconeai.com/oai/v1/log"
|
||||
headers = {
|
||||
'Authorization': f'Bearer {self.key}',
|
||||
'Content-Type': 'application/json'
|
||||
"Authorization": f"Bearer {self.key}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
start_time_seconds = int(start_time.timestamp())
|
||||
start_time_milliseconds = int((start_time.timestamp() - start_time_seconds) * 1000)
|
||||
start_time_milliseconds = int(
|
||||
(start_time.timestamp() - start_time_seconds) * 1000
|
||||
)
|
||||
end_time_seconds = int(end_time.timestamp())
|
||||
end_time_milliseconds = int((end_time.timestamp() - end_time_seconds) * 1000)
|
||||
end_time_milliseconds = int(
|
||||
(end_time.timestamp() - end_time_seconds) * 1000
|
||||
)
|
||||
data = {
|
||||
"providerRequest": {"url": self.provider_url, "json": provider_request, "meta": {"Helicone-Auth": f"Bearer {self.key}"}},
|
||||
"providerRequest": {
|
||||
"url": self.provider_url,
|
||||
"json": provider_request,
|
||||
"meta": {"Helicone-Auth": f"Bearer {self.key}"},
|
||||
},
|
||||
"providerResponse": providerResponse,
|
||||
"timing": {"startTime": {"seconds": start_time_seconds, "milliseconds": start_time_milliseconds}, "endTime": {"seconds": end_time_seconds, "milliseconds": end_time_milliseconds}} # {"seconds": .., "milliseconds": ..}
|
||||
"timing": {
|
||||
"startTime": {
|
||||
"seconds": start_time_seconds,
|
||||
"milliseconds": start_time_milliseconds,
|
||||
},
|
||||
"endTime": {
|
||||
"seconds": end_time_seconds,
|
||||
"milliseconds": end_time_milliseconds,
|
||||
},
|
||||
}, # {"seconds": .., "milliseconds": ..}
|
||||
}
|
||||
response = requests.post(url, headers=headers, json=data)
|
||||
if response.status_code == 200:
|
||||
print_verbose("Helicone Logging - Success!")
|
||||
else:
|
||||
print_verbose(f"Helicone Logging - Error Request was not successful. Status Code: {response.status_code}")
|
||||
print_verbose(
|
||||
f"Helicone Logging - Error Request was not successful. Status Code: {response.status_code}"
|
||||
)
|
||||
print_verbose(f"Helicone Logging - Error {response.text}")
|
||||
except:
|
||||
# traceback.print_exc()
|
||||
|
|
|
@ -3,31 +3,94 @@
|
|||
|
||||
import dotenv, os
|
||||
import requests
|
||||
|
||||
dotenv.load_dotenv() # Loading env variables using dotenv
|
||||
import traceback
|
||||
import datetime, subprocess, sys
|
||||
|
||||
model_cost = {
|
||||
"gpt-3.5-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
|
||||
"gpt-35-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002}, # azure model name
|
||||
"gpt-3.5-turbo-0613": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
|
||||
"gpt-3.5-turbo-0301": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
|
||||
"gpt-3.5-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
|
||||
"gpt-35-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004}, # azure model name
|
||||
"gpt-3.5-turbo-16k-0613": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
|
||||
"gpt-4": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
|
||||
"gpt-4-0613": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
|
||||
"gpt-4-32k": {"max_tokens": 8000, "input_cost_per_token": 0.00006, "output_cost_per_token": 0.00012},
|
||||
"claude-instant-1": {"max_tokens": 100000, "input_cost_per_token": 0.00000163, "output_cost_per_token": 0.00000551},
|
||||
"claude-2": {"max_tokens": 100000, "input_cost_per_token": 0.00001102, "output_cost_per_token": 0.00003268},
|
||||
"text-bison-001": {"max_tokens": 8192, "input_cost_per_token": 0.000004, "output_cost_per_token": 0.000004},
|
||||
"chat-bison-001": {"max_tokens": 4096, "input_cost_per_token": 0.000002, "output_cost_per_token": 0.000002},
|
||||
"command-nightly": {"max_tokens": 4096, "input_cost_per_token": 0.000015, "output_cost_per_token": 0.000015},
|
||||
"gpt-3.5-turbo": {
|
||||
"max_tokens": 4000,
|
||||
"input_cost_per_token": 0.0000015,
|
||||
"output_cost_per_token": 0.000002,
|
||||
},
|
||||
"gpt-35-turbo": {
|
||||
"max_tokens": 4000,
|
||||
"input_cost_per_token": 0.0000015,
|
||||
"output_cost_per_token": 0.000002,
|
||||
}, # azure model name
|
||||
"gpt-3.5-turbo-0613": {
|
||||
"max_tokens": 4000,
|
||||
"input_cost_per_token": 0.0000015,
|
||||
"output_cost_per_token": 0.000002,
|
||||
},
|
||||
"gpt-3.5-turbo-0301": {
|
||||
"max_tokens": 4000,
|
||||
"input_cost_per_token": 0.0000015,
|
||||
"output_cost_per_token": 0.000002,
|
||||
},
|
||||
"gpt-3.5-turbo-16k": {
|
||||
"max_tokens": 16000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.000004,
|
||||
},
|
||||
"gpt-35-turbo-16k": {
|
||||
"max_tokens": 16000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.000004,
|
||||
}, # azure model name
|
||||
"gpt-3.5-turbo-16k-0613": {
|
||||
"max_tokens": 16000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.000004,
|
||||
},
|
||||
"gpt-4": {
|
||||
"max_tokens": 8000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.00006,
|
||||
},
|
||||
"gpt-4-0613": {
|
||||
"max_tokens": 8000,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.00006,
|
||||
},
|
||||
"gpt-4-32k": {
|
||||
"max_tokens": 8000,
|
||||
"input_cost_per_token": 0.00006,
|
||||
"output_cost_per_token": 0.00012,
|
||||
},
|
||||
"claude-instant-1": {
|
||||
"max_tokens": 100000,
|
||||
"input_cost_per_token": 0.00000163,
|
||||
"output_cost_per_token": 0.00000551,
|
||||
},
|
||||
"claude-2": {
|
||||
"max_tokens": 100000,
|
||||
"input_cost_per_token": 0.00001102,
|
||||
"output_cost_per_token": 0.00003268,
|
||||
},
|
||||
"text-bison-001": {
|
||||
"max_tokens": 8192,
|
||||
"input_cost_per_token": 0.000004,
|
||||
"output_cost_per_token": 0.000004,
|
||||
},
|
||||
"chat-bison-001": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000002,
|
||||
"output_cost_per_token": 0.000002,
|
||||
},
|
||||
"command-nightly": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000015,
|
||||
"output_cost_per_token": 0.000015,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
class Supabase:
|
||||
# Class variables or attributes
|
||||
supabase_table_name = "request_logs"
|
||||
|
||||
def __init__(self):
|
||||
# Instance variables
|
||||
self.supabase_url = os.getenv("SUPABASE_URL")
|
||||
|
@ -35,9 +98,11 @@ class Supabase:
|
|||
try:
|
||||
import supabase
|
||||
except ImportError:
|
||||
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'supabase'])
|
||||
subprocess.check_call([sys.executable, "-m", "pip", "install", "supabase"])
|
||||
import supabase
|
||||
self.supabase_client = supabase.create_client(self.supabase_url, self.supabase_key)
|
||||
self.supabase_client = supabase.create_client(
|
||||
self.supabase_url, self.supabase_key
|
||||
)
|
||||
|
||||
def price_calculator(self, model, response_obj, start_time, end_time):
|
||||
# try and find if the model is in the model_cost map
|
||||
|
@ -45,8 +110,14 @@ class Supabase:
|
|||
prompt_tokens_cost_usd_dollar = 0
|
||||
completion_tokens_cost_usd_dollar = 0
|
||||
if model in model_cost:
|
||||
prompt_tokens_cost_usd_dollar = model_cost[model]["input_cost_per_token"] * response_obj["usage"]["prompt_tokens"]
|
||||
completion_tokens_cost_usd_dollar = model_cost[model]["output_cost_per_token"] * response_obj["usage"]["completion_tokens"]
|
||||
prompt_tokens_cost_usd_dollar = (
|
||||
model_cost[model]["input_cost_per_token"]
|
||||
* response_obj["usage"]["prompt_tokens"]
|
||||
)
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_cost[model]["output_cost_per_token"]
|
||||
* response_obj["usage"]["completion_tokens"]
|
||||
)
|
||||
elif "replicate" in model:
|
||||
# replicate models are charged based on time
|
||||
# llama 2 runs on an nvidia a100 which costs $0.0032 per second - https://replicate.com/replicate/llama-2-70b-chat
|
||||
|
@ -63,40 +134,74 @@ class Supabase:
|
|||
output_cost_sum += model_cost[model]["output_cost_per_token"]
|
||||
avg_input_cost = input_cost_sum / len(model_cost.keys())
|
||||
avg_output_cost = output_cost_sum / len(model_cost.keys())
|
||||
prompt_tokens_cost_usd_dollar = model_cost[model]["input_cost_per_token"] * response_obj["usage"]["prompt_tokens"]
|
||||
completion_tokens_cost_usd_dollar = model_cost[model]["output_cost_per_token"] * response_obj["usage"]["completion_tokens"]
|
||||
prompt_tokens_cost_usd_dollar = (
|
||||
model_cost[model]["input_cost_per_token"]
|
||||
* response_obj["usage"]["prompt_tokens"]
|
||||
)
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_cost[model]["output_cost_per_token"]
|
||||
* response_obj["usage"]["completion_tokens"]
|
||||
)
|
||||
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
|
||||
|
||||
def log_event(self, model, messages, end_user, response_obj, start_time, end_time, print_verbose):
|
||||
def log_event(
|
||||
self,
|
||||
model,
|
||||
messages,
|
||||
end_user,
|
||||
response_obj,
|
||||
start_time,
|
||||
end_time,
|
||||
print_verbose,
|
||||
):
|
||||
try:
|
||||
print_verbose(f"Supabase Logging - Enters logging function for model {model}, response_obj: {response_obj}")
|
||||
print_verbose(
|
||||
f"Supabase Logging - Enters logging function for model {model}, response_obj: {response_obj}"
|
||||
)
|
||||
|
||||
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = self.price_calculator(model, response_obj, start_time, end_time)
|
||||
total_cost = prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
|
||||
(
|
||||
prompt_tokens_cost_usd_dollar,
|
||||
completion_tokens_cost_usd_dollar,
|
||||
) = self.price_calculator(model, response_obj, start_time, end_time)
|
||||
total_cost = (
|
||||
prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
|
||||
)
|
||||
|
||||
response_time = (end_time-start_time).total_seconds()
|
||||
response_time = (end_time - start_time).total_seconds()
|
||||
if "choices" in response_obj:
|
||||
supabase_data_obj = {
|
||||
"response_time": response_time,
|
||||
"model": response_obj["model"],
|
||||
"total_cost": total_cost,
|
||||
"messages": messages,
|
||||
"response": response_obj['choices'][0]['message']['content'],
|
||||
"end_user": end_user
|
||||
"response": response_obj["choices"][0]["message"]["content"],
|
||||
"end_user": end_user,
|
||||
}
|
||||
print_verbose(f"Supabase Logging - final data object: {supabase_data_obj}")
|
||||
data, count = self.supabase_client.table(self.supabase_table_name).insert(supabase_data_obj).execute()
|
||||
print_verbose(
|
||||
f"Supabase Logging - final data object: {supabase_data_obj}"
|
||||
)
|
||||
data, count = (
|
||||
self.supabase_client.table(self.supabase_table_name)
|
||||
.insert(supabase_data_obj)
|
||||
.execute()
|
||||
)
|
||||
elif "error" in response_obj:
|
||||
supabase_data_obj = {
|
||||
"response_time": response_time,
|
||||
"model": response_obj["model"],
|
||||
"total_cost": total_cost,
|
||||
"messages": messages,
|
||||
"error": response_obj['error'],
|
||||
"end_user": end_user
|
||||
"error": response_obj["error"],
|
||||
"end_user": end_user,
|
||||
}
|
||||
print_verbose(f"Supabase Logging - final data object: {supabase_data_obj}")
|
||||
data, count = self.supabase_client.table(self.supabase_table_name).insert(supabase_data_obj).execute()
|
||||
print_verbose(
|
||||
f"Supabase Logging - final data object: {supabase_data_obj}"
|
||||
)
|
||||
data, count = (
|
||||
self.supabase_client.table(self.supabase_table_name)
|
||||
.insert(supabase_data_obj)
|
||||
.execute()
|
||||
)
|
||||
|
||||
except:
|
||||
# traceback.print_exc()
|
||||
|
|
|
@ -6,18 +6,22 @@ import time
|
|||
from typing import Callable
|
||||
from litellm.utils import ModelResponse
|
||||
|
||||
|
||||
class AnthropicConstants(Enum):
|
||||
HUMAN_PROMPT = "\n\nHuman:"
|
||||
AI_PROMPT = "\n\nAssistant:"
|
||||
|
||||
|
||||
class AnthropicError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
super().__init__(self.message) # Call the base class constructor with the parameters it needs
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class AnthropicLLM:
|
||||
|
||||
def __init__(self, encoding, default_max_tokens_to_sample, api_key=None):
|
||||
self.encoding = encoding
|
||||
self.default_max_tokens_to_sample = default_max_tokens_to_sample
|
||||
|
@ -25,31 +29,50 @@ class AnthropicLLM:
|
|||
self.api_key = api_key
|
||||
self.validate_environment(api_key=api_key)
|
||||
|
||||
def validate_environment(self, api_key): # set up the environment required to run the model
|
||||
def validate_environment(
|
||||
self, api_key
|
||||
): # set up the environment required to run the model
|
||||
# set the api key
|
||||
if self.api_key == None:
|
||||
raise ValueError("Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params")
|
||||
raise ValueError(
|
||||
"Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params"
|
||||
)
|
||||
self.api_key = api_key
|
||||
self.headers = {
|
||||
"accept": "application/json",
|
||||
"anthropic-version": "2023-06-01",
|
||||
"content-type": "application/json",
|
||||
"x-api-key": self.api_key
|
||||
"x-api-key": self.api_key,
|
||||
}
|
||||
|
||||
def completion(self, model: str, messages: list, model_response: ModelResponse, print_verbose: Callable, optional_params=None, litellm_params=None, logger_fn=None): # logic for parsing in - calling - parsing out model completion calls
|
||||
def completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
): # logic for parsing in - calling - parsing out model completion calls
|
||||
model = model
|
||||
prompt = f"{AnthropicConstants.HUMAN_PROMPT.value}"
|
||||
for message in messages:
|
||||
if "role" in message:
|
||||
if message["role"] == "user":
|
||||
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
|
||||
prompt += (
|
||||
f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
|
||||
)
|
||||
else:
|
||||
prompt += f"{AnthropicConstants.AI_PROMPT.value}{message['content']}"
|
||||
prompt += (
|
||||
f"{AnthropicConstants.AI_PROMPT.value}{message['content']}"
|
||||
)
|
||||
else:
|
||||
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
|
||||
prompt += f"{AnthropicConstants.AI_PROMPT.value}"
|
||||
if "max_tokens" in optional_params and optional_params["max_tokens"] != float('inf'):
|
||||
if "max_tokens" in optional_params and optional_params["max_tokens"] != float(
|
||||
"inf"
|
||||
):
|
||||
max_tokens = optional_params["max_tokens"]
|
||||
else:
|
||||
max_tokens = self.default_max_tokens_to_sample
|
||||
|
@ -57,37 +80,64 @@ class AnthropicLLM:
|
|||
"model": model,
|
||||
"prompt": prompt,
|
||||
"max_tokens_to_sample": max_tokens,
|
||||
**optional_params
|
||||
**optional_params,
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, additional_args={"litellm_params": litellm_params, "optional_params": optional_params}, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
additional_args={
|
||||
"litellm_params": litellm_params,
|
||||
"optional_params": optional_params,
|
||||
},
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
## COMPLETION CALL
|
||||
response = requests.post(self.completion_url, headers=self.headers, data=json.dumps(data))
|
||||
response = requests.post(
|
||||
self.completion_url, headers=self.headers, data=json.dumps(data)
|
||||
)
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
return response.iter_lines()
|
||||
else:
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, additional_args={"litellm_params": litellm_params, "optional_params": optional_params, "original_response": response.text}, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
additional_args={
|
||||
"litellm_params": litellm_params,
|
||||
"optional_params": optional_params,
|
||||
"original_response": response.text,
|
||||
},
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
print_verbose(f"raw model_response: {response.text}")
|
||||
## RESPONSE OBJECT
|
||||
completion_response = response.json()
|
||||
if "error" in completion_response:
|
||||
raise AnthropicError(message=completion_response["error"], status_code=response.status_code)
|
||||
raise AnthropicError(
|
||||
message=completion_response["error"],
|
||||
status_code=response.status_code,
|
||||
)
|
||||
else:
|
||||
model_response["choices"][0]["message"]["content"] = completion_response["completion"]
|
||||
model_response["choices"][0]["message"][
|
||||
"content"
|
||||
] = completion_response["completion"]
|
||||
|
||||
## CALCULATING USAGE
|
||||
prompt_tokens = len(self.encoding.encode(prompt)) ##[TODO] use the anthropic tokenizer here
|
||||
completion_tokens = len(self.encoding.encode(model_response["choices"][0]["message"]["content"])) ##[TODO] use the anthropic tokenizer here
|
||||
|
||||
prompt_tokens = len(
|
||||
self.encoding.encode(prompt)
|
||||
) ##[TODO] use the anthropic tokenizer here
|
||||
completion_tokens = len(
|
||||
self.encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||
) ##[TODO] use the anthropic tokenizer here
|
||||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
return model_response
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
## This is a template base class to be used for adding new LLM providers via API calls
|
||||
|
||||
class BaseLLM():
|
||||
|
||||
class BaseLLM:
|
||||
def validate_environment(): # set up the environment required to run the model
|
||||
pass
|
||||
|
||||
|
|
|
@ -7,18 +7,24 @@ import time
|
|||
from typing import Callable
|
||||
from litellm.utils import ModelResponse
|
||||
|
||||
|
||||
class HuggingfaceError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
super().__init__(self.message) # Call the base class constructor with the parameters it needs
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
class HuggingfaceRestAPILLM():
|
||||
|
||||
class HuggingfaceRestAPILLM:
|
||||
def __init__(self, encoding, api_key=None) -> None:
|
||||
self.encoding = encoding
|
||||
self.validate_environment(api_key=api_key)
|
||||
|
||||
def validate_environment(self, api_key): # set up the environment required to run the model
|
||||
def validate_environment(
|
||||
self, api_key
|
||||
): # set up the environment required to run the model
|
||||
self.headers = {
|
||||
"content-type": "application/json",
|
||||
}
|
||||
|
@ -27,7 +33,17 @@ class HuggingfaceRestAPILLM():
|
|||
if self.api_key != None:
|
||||
self.headers["Authorization"] = f"Bearer {self.api_key}"
|
||||
|
||||
def completion(self, model: str, messages: list, custom_api_base: str, model_response: ModelResponse, print_verbose: Callable, optional_params=None, litellm_params=None, logger_fn=None): # logic for parsing in - calling - parsing out model completion calls
|
||||
def completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list,
|
||||
custom_api_base: str,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
): # logic for parsing in - calling - parsing out model completion calls
|
||||
if custom_api_base:
|
||||
completion_url = custom_api_base
|
||||
elif "HF_API_BASE" in os.environ:
|
||||
|
@ -35,7 +51,9 @@ class HuggingfaceRestAPILLM():
|
|||
else:
|
||||
completion_url = f"https://api-inference.huggingface.co/models/{model}"
|
||||
prompt = ""
|
||||
if "meta-llama" in model and "chat" in model: # use the required special tokens for meta-llama - https://huggingface.co/blog/llama2#how-to-prompt-llama-2
|
||||
if (
|
||||
"meta-llama" in model and "chat" in model
|
||||
): # use the required special tokens for meta-llama - https://huggingface.co/blog/llama2#how-to-prompt-llama-2
|
||||
prompt = "<s>"
|
||||
for message in messages:
|
||||
if message["role"] == "system":
|
||||
|
@ -57,14 +75,33 @@ class HuggingfaceRestAPILLM():
|
|||
# "parameters": optional_params
|
||||
}
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, additional_args={"litellm_params": litellm_params, "optional_params": optional_params}, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
additional_args={
|
||||
"litellm_params": litellm_params,
|
||||
"optional_params": optional_params,
|
||||
},
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
## COMPLETION CALL
|
||||
response = requests.post(completion_url, headers=self.headers, data=json.dumps(data))
|
||||
response = requests.post(
|
||||
completion_url, headers=self.headers, data=json.dumps(data)
|
||||
)
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
return response.iter_lines()
|
||||
else:
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, additional_args={"litellm_params": litellm_params, "optional_params": optional_params, "original_response": response.text}, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
additional_args={
|
||||
"litellm_params": litellm_params,
|
||||
"optional_params": optional_params,
|
||||
"original_response": response.text,
|
||||
},
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
print_verbose(f"raw model_response: {response.text}")
|
||||
## RESPONSE OBJECT
|
||||
completion_response = response.json()
|
||||
|
@ -72,21 +109,29 @@ class HuggingfaceRestAPILLM():
|
|||
if isinstance(completion_response, dict) and "error" in completion_response:
|
||||
print_verbose(f"completion error: {completion_response['error']}")
|
||||
print_verbose(f"response.status_code: {response.status_code}")
|
||||
raise HuggingfaceError(message=completion_response["error"], status_code=response.status_code)
|
||||
raise HuggingfaceError(
|
||||
message=completion_response["error"],
|
||||
status_code=response.status_code,
|
||||
)
|
||||
else:
|
||||
model_response["choices"][0]["message"]["content"] = completion_response[0]["generated_text"]
|
||||
model_response["choices"][0]["message"][
|
||||
"content"
|
||||
] = completion_response[0]["generated_text"]
|
||||
|
||||
## CALCULATING USAGE
|
||||
prompt_tokens = len(self.encoding.encode(prompt)) ##[TODO] use the llama2 tokenizer here
|
||||
completion_tokens = len(self.encoding.encode(model_response["choices"][0]["message"]["content"])) ##[TODO] use the llama2 tokenizer here
|
||||
|
||||
prompt_tokens = len(
|
||||
self.encoding.encode(prompt)
|
||||
) ##[TODO] use the llama2 tokenizer here
|
||||
completion_tokens = len(
|
||||
self.encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||
) ##[TODO] use the llama2 tokenizer here
|
||||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
return model_response
|
||||
pass
|
||||
|
|
586
litellm/main.py
586
litellm/main.py
|
@ -4,17 +4,43 @@ from functools import partial
|
|||
import dotenv, traceback, random, asyncio, time
|
||||
from copy import deepcopy
|
||||
import litellm
|
||||
from litellm import client, logging, exception_type, timeout, get_optional_params, get_litellm_params
|
||||
from litellm.utils import get_secret, install_and_import, CustomStreamWrapper, read_config_args
|
||||
from litellm import (
|
||||
client,
|
||||
logging,
|
||||
exception_type,
|
||||
timeout,
|
||||
get_optional_params,
|
||||
get_litellm_params,
|
||||
)
|
||||
from litellm.utils import (
|
||||
get_secret,
|
||||
install_and_import,
|
||||
CustomStreamWrapper,
|
||||
read_config_args,
|
||||
)
|
||||
from .llms.anthropic import AnthropicLLM
|
||||
from .llms.huggingface_restapi import HuggingfaceRestAPILLM
|
||||
import tiktoken
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
encoding = tiktoken.get_encoding("cl100k_base")
|
||||
from litellm.utils import get_secret, install_and_import, CustomStreamWrapper, ModelResponse, read_config_args
|
||||
from litellm.utils import get_ollama_response_stream, stream_to_string, together_ai_completion_streaming
|
||||
from litellm.utils import (
|
||||
get_secret,
|
||||
install_and_import,
|
||||
CustomStreamWrapper,
|
||||
ModelResponse,
|
||||
read_config_args,
|
||||
)
|
||||
from litellm.utils import (
|
||||
get_ollama_response_stream,
|
||||
stream_to_string,
|
||||
together_ai_completion_streaming,
|
||||
)
|
||||
|
||||
####### ENVIRONMENT VARIABLES ###################
|
||||
dotenv.load_dotenv() # Loading env variables using dotenv
|
||||
|
||||
|
||||
####### COMPLETION ENDPOINTS ################
|
||||
#############################################
|
||||
async def acompletion(*args, **kwargs):
|
||||
|
@ -26,115 +52,198 @@ async def acompletion(*args, **kwargs):
|
|||
# Call the synchronous function using run_in_executor
|
||||
return await loop.run_in_executor(None, func)
|
||||
|
||||
|
||||
@client
|
||||
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(2), reraise=True, retry_error_callback=lambda retry_state: setattr(retry_state.outcome, 'retry_variable', litellm.retry)) # retry call, turn this off by setting `litellm.retry = False`
|
||||
@timeout(600) ## set timeouts, in case calls hang (e.g. Azure) - default is 60s, override with `force_timeout`
|
||||
@timeout(
|
||||
600
|
||||
) ## set timeouts, in case calls hang (e.g. Azure) - default is 60s, override with `force_timeout`
|
||||
def completion(
|
||||
model, messages,# required params
|
||||
model,
|
||||
messages, # required params
|
||||
# Optional OpenAI params: see https://platform.openai.com/docs/api-reference/chat/create
|
||||
functions=[], function_call="", # optional params
|
||||
temperature=1, top_p=1, n=1, stream=False, stop=None, max_tokens=float('inf'),
|
||||
presence_penalty=0, frequency_penalty=0, logit_bias={}, user="", deployment_id=None,
|
||||
functions=[],
|
||||
function_call="", # optional params
|
||||
temperature=1,
|
||||
top_p=1,
|
||||
n=1,
|
||||
stream=False,
|
||||
stop=None,
|
||||
max_tokens=float("inf"),
|
||||
presence_penalty=0,
|
||||
frequency_penalty=0,
|
||||
logit_bias={},
|
||||
user="",
|
||||
deployment_id=None,
|
||||
# Optional liteLLM function params
|
||||
*, return_async=False, api_key=None, force_timeout=600, logger_fn=None, verbose=False, azure=False, custom_llm_provider=None, custom_api_base=None,
|
||||
*,
|
||||
return_async=False,
|
||||
api_key=None,
|
||||
force_timeout=600,
|
||||
logger_fn=None,
|
||||
verbose=False,
|
||||
azure=False,
|
||||
custom_llm_provider=None,
|
||||
custom_api_base=None,
|
||||
# model specific optional params
|
||||
# used by text-bison only
|
||||
top_k=40, request_timeout=0, # unused var for old version of OpenAI API
|
||||
) -> ModelResponse:
|
||||
top_k=40,
|
||||
request_timeout=0, # unused var for old version of OpenAI API
|
||||
) -> ModelResponse:
|
||||
try:
|
||||
model_response = ModelResponse()
|
||||
if azure: # this flag is deprecated, remove once notebooks are also updated.
|
||||
custom_llm_provider="azure"
|
||||
custom_llm_provider = "azure"
|
||||
args = locals()
|
||||
# check if user passed in any of the OpenAI optional params
|
||||
optional_params = get_optional_params(
|
||||
functions=functions, function_call=function_call,
|
||||
temperature=temperature, top_p=top_p, n=n, stream=stream, stop=stop, max_tokens=max_tokens,
|
||||
presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, logit_bias=logit_bias, user=user, deployment_id=deployment_id,
|
||||
functions=functions,
|
||||
function_call=function_call,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
n=n,
|
||||
stream=stream,
|
||||
stop=stop,
|
||||
max_tokens=max_tokens,
|
||||
presence_penalty=presence_penalty,
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
user=user,
|
||||
deployment_id=deployment_id,
|
||||
# params to identify the model
|
||||
model=model, custom_llm_provider=custom_llm_provider, top_k=top_k,
|
||||
model=model,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
top_k=top_k,
|
||||
)
|
||||
# For logging - save the values of the litellm-specific params passed in
|
||||
litellm_params = get_litellm_params(
|
||||
return_async=return_async, api_key=api_key, force_timeout=force_timeout,
|
||||
logger_fn=logger_fn, verbose=verbose, custom_llm_provider=custom_llm_provider,
|
||||
custom_api_base=custom_api_base)
|
||||
return_async=return_async,
|
||||
api_key=api_key,
|
||||
force_timeout=force_timeout,
|
||||
logger_fn=logger_fn,
|
||||
verbose=verbose,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
custom_api_base=custom_api_base,
|
||||
)
|
||||
|
||||
if custom_llm_provider == "azure":
|
||||
# azure configs
|
||||
openai.api_type = "azure"
|
||||
openai.api_base = litellm.api_base if litellm.api_base is not None else get_secret("AZURE_API_BASE")
|
||||
openai.api_version = litellm.api_version if litellm.api_version is not None else get_secret("AZURE_API_VERSION")
|
||||
openai.api_base = (
|
||||
litellm.api_base
|
||||
if litellm.api_base is not None
|
||||
else get_secret("AZURE_API_BASE")
|
||||
)
|
||||
openai.api_version = (
|
||||
litellm.api_version
|
||||
if litellm.api_version is not None
|
||||
else get_secret("AZURE_API_VERSION")
|
||||
)
|
||||
# set key
|
||||
openai.api_key = api_key or litellm.azure_key or get_secret("AZURE_API_KEY")
|
||||
## LOGGING
|
||||
logging(model=model, input=messages, additional_args=optional_params, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=messages,
|
||||
additional_args=optional_params,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
## COMPLETION CALL
|
||||
if litellm.headers:
|
||||
response = openai.ChatCompletion.create(
|
||||
engine=model,
|
||||
messages = messages,
|
||||
headers = litellm.headers,
|
||||
messages=messages,
|
||||
headers=litellm.headers,
|
||||
**optional_params,
|
||||
)
|
||||
else:
|
||||
response = openai.ChatCompletion.create(
|
||||
model=model,
|
||||
messages = messages,
|
||||
**optional_params
|
||||
model=model, messages=messages, **optional_params
|
||||
)
|
||||
elif model in litellm.open_ai_chat_completion_models or custom_llm_provider == "custom_openai": # allow user to make an openai call with a custom base
|
||||
elif (
|
||||
model in litellm.open_ai_chat_completion_models
|
||||
or custom_llm_provider == "custom_openai"
|
||||
): # allow user to make an openai call with a custom base
|
||||
openai.api_type = "openai"
|
||||
# note: if a user sets a custom base - we should ensure this works
|
||||
api_base = custom_api_base if custom_api_base is not None else litellm.api_base # allow for the setting of dynamic and stateful api-bases
|
||||
openai.api_base = api_base if api_base is not None else "https://api.openai.com/v1"
|
||||
api_base = (
|
||||
custom_api_base if custom_api_base is not None else litellm.api_base
|
||||
) # allow for the setting of dynamic and stateful api-bases
|
||||
openai.api_base = (
|
||||
api_base if api_base is not None else "https://api.openai.com/v1"
|
||||
)
|
||||
openai.api_version = None
|
||||
if litellm.organization:
|
||||
openai.organization = litellm.organization
|
||||
# set API KEY
|
||||
openai.api_key = api_key or litellm.openai_key or get_secret("OPENAI_API_KEY")
|
||||
openai.api_key = (
|
||||
api_key or litellm.openai_key or get_secret("OPENAI_API_KEY")
|
||||
)
|
||||
|
||||
## LOGGING
|
||||
logging(model=model, input=messages, additional_args=args, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=messages,
|
||||
additional_args=args,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
## COMPLETION CALL
|
||||
if litellm.headers:
|
||||
response = openai.ChatCompletion.create(
|
||||
model=model,
|
||||
messages = messages,
|
||||
headers = litellm.headers,
|
||||
**optional_params
|
||||
messages=messages,
|
||||
headers=litellm.headers,
|
||||
**optional_params,
|
||||
)
|
||||
else:
|
||||
response = openai.ChatCompletion.create(
|
||||
model=model,
|
||||
messages = messages,
|
||||
**optional_params
|
||||
model=model, messages=messages, **optional_params
|
||||
)
|
||||
elif model in litellm.open_ai_text_completion_models:
|
||||
openai.api_type = "openai"
|
||||
openai.api_base = litellm.api_base if litellm.api_base is not None else "https://api.openai.com/v1"
|
||||
openai.api_base = (
|
||||
litellm.api_base
|
||||
if litellm.api_base is not None
|
||||
else "https://api.openai.com/v1"
|
||||
)
|
||||
openai.api_version = None
|
||||
openai.api_key = api_key or litellm.openai_key or get_secret("OPENAI_API_KEY")
|
||||
openai.api_key = (
|
||||
api_key or litellm.openai_key or get_secret("OPENAI_API_KEY")
|
||||
)
|
||||
if litellm.organization:
|
||||
openai.organization = litellm.organization
|
||||
prompt = " ".join([message["content"] for message in messages])
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, additional_args=optional_params, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
additional_args=optional_params,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
## COMPLETION CALL
|
||||
if litellm.headers:
|
||||
response = openai.Completion.create(
|
||||
model=model,
|
||||
prompt = prompt,
|
||||
headers = litellm.headers,
|
||||
prompt=prompt,
|
||||
headers=litellm.headers,
|
||||
)
|
||||
else:
|
||||
response = openai.Completion.create(
|
||||
model=model,
|
||||
prompt = prompt
|
||||
)
|
||||
response = openai.Completion.create(model=model, prompt=prompt)
|
||||
completion_response = response["choices"][0]["text"]
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
additional_args={
|
||||
"max_tokens": max_tokens,
|
||||
"original_response": completion_response,
|
||||
},
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
## RESPONSE OBJECT
|
||||
model_response["choices"][0]["message"]["content"] = completion_response
|
||||
model_response["created"] = response["created"]
|
||||
|
@ -145,11 +254,17 @@ def completion(
|
|||
# import replicate/if it fails then pip install replicate
|
||||
install_and_import("replicate")
|
||||
import replicate
|
||||
|
||||
# Setting the relevant API KEY for replicate, replicate defaults to using os.environ.get("REPLICATE_API_TOKEN")
|
||||
replicate_key = os.environ.get("REPLICATE_API_TOKEN")
|
||||
if replicate_key == None:
|
||||
# user did not set REPLICATE_API_TOKEN in .env
|
||||
replicate_key = get_secret("REPLICATE_API_KEY") or get_secret("REPLICATE_API_TOKEN") or api_key or litellm.replicate_key
|
||||
replicate_key = (
|
||||
get_secret("REPLICATE_API_KEY")
|
||||
or get_secret("REPLICATE_API_TOKEN")
|
||||
or api_key
|
||||
or litellm.replicate_key
|
||||
)
|
||||
# set replicate kye
|
||||
os.environ["REPLICATE_API_TOKEN"] = replicate_key
|
||||
prompt = " ".join([message["content"] for message in messages])
|
||||
|
@ -158,12 +273,16 @@ def completion(
|
|||
input["max_length"] = max_tokens # for t5 models
|
||||
input["max_new_tokens"] = max_tokens # for llama2 models
|
||||
## LOGGING
|
||||
logging(model=model, input=input, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=input,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
additional_args={"max_tokens": max_tokens},
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
## COMPLETION CALL
|
||||
output = replicate.run(
|
||||
model,
|
||||
input=input)
|
||||
if 'stream' in optional_params and optional_params['stream'] == True:
|
||||
output = replicate.run(model, input=input)
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
# don't try to access stream object,
|
||||
# let the stream handler know this is replicate
|
||||
response = CustomStreamWrapper(output, "replicate")
|
||||
|
@ -173,7 +292,16 @@ def completion(
|
|||
response += item
|
||||
completion_response = response
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
additional_args={
|
||||
"max_tokens": max_tokens,
|
||||
"original_response": completion_response,
|
||||
},
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
prompt_tokens = len(encoding.encode(prompt))
|
||||
completion_tokens = len(encoding.encode(completion_response))
|
||||
## RESPONSE OBJECT
|
||||
|
@ -183,14 +311,28 @@ def completion(
|
|||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
response = model_response
|
||||
elif model in litellm.anthropic_models:
|
||||
anthropic_key = api_key or litellm.anthropic_key or os.environ.get("ANTHROPIC_API_KEY")
|
||||
anthropic_client = AnthropicLLM(encoding=encoding, default_max_tokens_to_sample=litellm.max_tokens, api_key=anthropic_key)
|
||||
model_response = anthropic_client.completion(model=model, messages=messages, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn)
|
||||
if 'stream' in optional_params and optional_params['stream'] == True:
|
||||
anthropic_key = (
|
||||
api_key or litellm.anthropic_key or os.environ.get("ANTHROPIC_API_KEY")
|
||||
)
|
||||
anthropic_client = AnthropicLLM(
|
||||
encoding=encoding,
|
||||
default_max_tokens_to_sample=litellm.max_tokens,
|
||||
api_key=anthropic_key,
|
||||
)
|
||||
model_response = anthropic_client.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
# don't try to access stream object,
|
||||
response = CustomStreamWrapper(model_response, model)
|
||||
return response
|
||||
|
@ -198,7 +340,11 @@ def completion(
|
|||
elif model in litellm.openrouter_models or custom_llm_provider == "openrouter":
|
||||
openai.api_type = "openai"
|
||||
# not sure if this will work after someone first uses another API
|
||||
openai.api_base = litellm.api_base if litellm.api_base is not None else "https://openrouter.ai/api/v1"
|
||||
openai.api_base = (
|
||||
litellm.api_base
|
||||
if litellm.api_base is not None
|
||||
else "https://openrouter.ai/api/v1"
|
||||
)
|
||||
openai.api_version = None
|
||||
if litellm.organization:
|
||||
openai.organization = litellm.organization
|
||||
|
@ -207,16 +353,24 @@ def completion(
|
|||
elif litellm.openrouter_key:
|
||||
openai.api_key = litellm.openrouter_key
|
||||
else:
|
||||
openai.api_key = get_secret("OPENROUTER_API_KEY") or get_secret("OR_API_KEY")
|
||||
openai.api_key = get_secret("OPENROUTER_API_KEY") or get_secret(
|
||||
"OR_API_KEY"
|
||||
)
|
||||
## LOGGING
|
||||
logging(model=model, input=messages, additional_args=optional_params, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=messages,
|
||||
additional_args=optional_params,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
## COMPLETION CALL
|
||||
if litellm.headers:
|
||||
response = openai.ChatCompletion.create(
|
||||
model=model,
|
||||
messages = messages,
|
||||
headers = litellm.headers,
|
||||
**optional_params
|
||||
messages=messages,
|
||||
headers=litellm.headers,
|
||||
**optional_params,
|
||||
)
|
||||
else:
|
||||
openrouter_site_url = get_secret("OR_SITE_URL")
|
||||
|
@ -229,37 +383,52 @@ def completion(
|
|||
openrouter_app_name = "liteLLM"
|
||||
response = openai.ChatCompletion.create(
|
||||
model=model,
|
||||
messages = messages,
|
||||
headers =
|
||||
{
|
||||
messages=messages,
|
||||
headers={
|
||||
"HTTP-Referer": openrouter_site_url, # To identify your site
|
||||
"X-Title": openrouter_app_name # To identify your app
|
||||
"X-Title": openrouter_app_name, # To identify your app
|
||||
},
|
||||
**optional_params
|
||||
**optional_params,
|
||||
)
|
||||
elif model in litellm.cohere_models:
|
||||
# import cohere/if it fails then pip install cohere
|
||||
install_and_import("cohere")
|
||||
import cohere
|
||||
cohere_key = api_key or litellm.cohere_key or get_secret("COHERE_API_KEY") or get_secret("CO_API_KEY")
|
||||
|
||||
cohere_key = (
|
||||
api_key
|
||||
or litellm.cohere_key
|
||||
or get_secret("COHERE_API_KEY")
|
||||
or get_secret("CO_API_KEY")
|
||||
)
|
||||
co = cohere.Client(cohere_key)
|
||||
prompt = " ".join([message["content"] for message in messages])
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
|
||||
## COMPLETION CALL
|
||||
response = co.generate(
|
||||
logging(
|
||||
model=model,
|
||||
prompt = prompt,
|
||||
**optional_params
|
||||
input=prompt,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
if 'stream' in optional_params and optional_params['stream'] == True:
|
||||
## COMPLETION CALL
|
||||
response = co.generate(model=model, prompt=prompt, **optional_params)
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
# don't try to access stream object,
|
||||
response = CustomStreamWrapper(response, model)
|
||||
return response
|
||||
|
||||
completion_response = response[0].text
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
additional_args={
|
||||
"max_tokens": max_tokens,
|
||||
"original_response": completion_response,
|
||||
},
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
prompt_tokens = len(encoding.encode(prompt))
|
||||
completion_tokens = len(encoding.encode(completion_response))
|
||||
## RESPONSE OBJECT
|
||||
|
@ -269,52 +438,100 @@ def completion(
|
|||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
response = model_response
|
||||
elif model in litellm.huggingface_models or custom_llm_provider == "huggingface":
|
||||
elif (
|
||||
model in litellm.huggingface_models or custom_llm_provider == "huggingface"
|
||||
):
|
||||
custom_llm_provider = "huggingface"
|
||||
huggingface_key = api_key or litellm.huggingface_key or os.environ.get("HF_TOKEN") or os.environ.get("HUGGINGFACE_API_KEY")
|
||||
huggingface_client = HuggingfaceRestAPILLM(encoding=encoding, api_key=huggingface_key)
|
||||
model_response = huggingface_client.completion(model=model, messages=messages, custom_api_base=custom_api_base, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn)
|
||||
if 'stream' in optional_params and optional_params['stream'] == True:
|
||||
huggingface_key = (
|
||||
api_key
|
||||
or litellm.huggingface_key
|
||||
or os.environ.get("HF_TOKEN")
|
||||
or os.environ.get("HUGGINGFACE_API_KEY")
|
||||
)
|
||||
huggingface_client = HuggingfaceRestAPILLM(
|
||||
encoding=encoding, api_key=huggingface_key
|
||||
)
|
||||
model_response = huggingface_client.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
custom_api_base=custom_api_base,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
# don't try to access stream object,
|
||||
response = CustomStreamWrapper(model_response, model, custom_llm_provider="huggingface")
|
||||
response = CustomStreamWrapper(
|
||||
model_response, model, custom_llm_provider="huggingface"
|
||||
)
|
||||
return response
|
||||
response = model_response
|
||||
elif custom_llm_provider == "together_ai" or ("togethercomputer" in model):
|
||||
import requests
|
||||
TOGETHER_AI_TOKEN = get_secret("TOGETHER_AI_TOKEN") or get_secret("TOGETHERAI_API_KEY") or api_key or litellm.togetherai_api_key
|
||||
|
||||
TOGETHER_AI_TOKEN = (
|
||||
get_secret("TOGETHER_AI_TOKEN")
|
||||
or get_secret("TOGETHERAI_API_KEY")
|
||||
or api_key
|
||||
or litellm.togetherai_api_key
|
||||
)
|
||||
headers = {"Authorization": f"Bearer {TOGETHER_AI_TOKEN}"}
|
||||
endpoint = 'https://api.together.xyz/inference'
|
||||
prompt = " ".join([message["content"] for message in messages]) # TODO: Add chat support for together AI
|
||||
endpoint = "https://api.together.xyz/inference"
|
||||
prompt = " ".join(
|
||||
[message["content"] for message in messages]
|
||||
) # TODO: Add chat support for together AI
|
||||
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
if stream == True:
|
||||
return together_ai_completion_streaming({
|
||||
return together_ai_completion_streaming(
|
||||
{
|
||||
"model": model,
|
||||
"prompt": prompt,
|
||||
"request_type": "language-model-inference",
|
||||
**optional_params
|
||||
**optional_params,
|
||||
},
|
||||
headers=headers)
|
||||
res = requests.post(endpoint, json={
|
||||
headers=headers,
|
||||
)
|
||||
res = requests.post(
|
||||
endpoint,
|
||||
json={
|
||||
"model": model,
|
||||
"prompt": prompt,
|
||||
"request_type": "language-model-inference",
|
||||
**optional_params
|
||||
**optional_params,
|
||||
},
|
||||
headers=headers
|
||||
headers=headers,
|
||||
)
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": res.text}, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
additional_args={
|
||||
"max_tokens": max_tokens,
|
||||
"original_response": res.text,
|
||||
},
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
|
||||
# make this safe for reading, if output does not exist raise an error
|
||||
json_response = res.json()
|
||||
if "output" not in json_response:
|
||||
raise Exception(f"liteLLM: Error Making TogetherAI request, JSON Response {json_response}")
|
||||
completion_response = json_response['output']['choices'][0]['text']
|
||||
raise Exception(
|
||||
f"liteLLM: Error Making TogetherAI request, JSON Response {json_response}"
|
||||
)
|
||||
completion_response = json_response["output"]["choices"][0]["text"]
|
||||
prompt_tokens = len(encoding.encode(prompt))
|
||||
completion_tokens = len(encoding.encode(completion_response))
|
||||
## RESPONSE OBJECT
|
||||
|
@ -324,7 +541,7 @@ def completion(
|
|||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
response = model_response
|
||||
elif model in litellm.vertex_chat_models:
|
||||
|
@ -332,21 +549,41 @@ def completion(
|
|||
install_and_import("vertexai")
|
||||
import vertexai
|
||||
from vertexai.preview.language_models import ChatModel, InputOutputTextPair
|
||||
vertexai.init(project=litellm.vertex_project, location=litellm.vertex_location)
|
||||
|
||||
vertexai.init(
|
||||
project=litellm.vertex_project, location=litellm.vertex_location
|
||||
)
|
||||
# vertexai does not use an API key, it looks for credentials.json in the environment
|
||||
|
||||
prompt = " ".join([message["content"] for message in messages])
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"litellm_params": litellm_params, "optional_params": optional_params}, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
additional_args={
|
||||
"litellm_params": litellm_params,
|
||||
"optional_params": optional_params,
|
||||
},
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
|
||||
chat_model = ChatModel.from_pretrained(model)
|
||||
|
||||
|
||||
chat = chat_model.start_chat()
|
||||
completion_response = chat.send_message(prompt, **optional_params)
|
||||
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
additional_args={
|
||||
"max_tokens": max_tokens,
|
||||
"original_response": completion_response,
|
||||
},
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
model_response["choices"][0]["message"]["content"] = completion_response
|
||||
|
@ -358,17 +595,33 @@ def completion(
|
|||
import vertexai
|
||||
from vertexai.language_models import TextGenerationModel
|
||||
|
||||
vertexai.init(project=litellm.vertex_project, location=litellm.vertex_location)
|
||||
vertexai.init(
|
||||
project=litellm.vertex_project, location=litellm.vertex_location
|
||||
)
|
||||
# vertexai does not use an API key, it looks for credentials.json in the environment
|
||||
|
||||
prompt = " ".join([message["content"] for message in messages])
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
vertex_model = TextGenerationModel.from_pretrained(model)
|
||||
completion_response= vertex_model.predict(prompt, **optional_params)
|
||||
completion_response = vertex_model.predict(prompt, **optional_params)
|
||||
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
additional_args={
|
||||
"max_tokens": max_tokens,
|
||||
"original_response": completion_response,
|
||||
},
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
model_response["choices"][0]["message"]["content"] = completion_response
|
||||
|
@ -378,20 +631,35 @@ def completion(
|
|||
elif model in litellm.ai21_models:
|
||||
install_and_import("ai21")
|
||||
import ai21
|
||||
|
||||
ai21.api_key = get_secret("AI21_API_KEY")
|
||||
|
||||
prompt = " ".join([message["content"] for message in messages])
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
|
||||
ai21_response = ai21.Completion.execute(
|
||||
model=model,
|
||||
prompt=prompt,
|
||||
)
|
||||
completion_response = ai21_response['completions'][0]['data']['text']
|
||||
completion_response = ai21_response["completions"][0]["data"]["text"]
|
||||
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
additional_args={
|
||||
"max_tokens": max_tokens,
|
||||
"original_response": completion_response,
|
||||
},
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
model_response["choices"][0]["message"]["content"] = completion_response
|
||||
|
@ -399,7 +667,9 @@ def completion(
|
|||
model_response["model"] = model
|
||||
response = model_response
|
||||
elif custom_llm_provider == "ollama":
|
||||
endpoint = litellm.api_base if litellm.api_base is not None else custom_api_base
|
||||
endpoint = (
|
||||
litellm.api_base if litellm.api_base is not None else custom_api_base
|
||||
)
|
||||
prompt = " ".join([message["content"] for message in messages])
|
||||
|
||||
## LOGGING
|
||||
|
@ -407,14 +677,23 @@ def completion(
|
|||
generator = get_ollama_response_stream(endpoint, model, prompt)
|
||||
# assume all responses are streamed
|
||||
return generator
|
||||
elif custom_llm_provider == "baseten" or litellm.api_base=="https://app.baseten.co":
|
||||
elif (
|
||||
custom_llm_provider == "baseten"
|
||||
or litellm.api_base == "https://app.baseten.co"
|
||||
):
|
||||
import baseten
|
||||
base_ten_key = get_secret('BASETEN_API_KEY')
|
||||
|
||||
base_ten_key = get_secret("BASETEN_API_KEY")
|
||||
baseten.login(base_ten_key)
|
||||
|
||||
prompt = " ".join([message["content"] for message in messages])
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
|
||||
base_ten__model = baseten.deployed_model_version_id(model)
|
||||
|
||||
|
@ -424,7 +703,16 @@ def completion(
|
|||
if type(completion_response) == dict:
|
||||
completion_response = completion_response["generated_text"]
|
||||
|
||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
additional_args={
|
||||
"max_tokens": max_tokens,
|
||||
"original_response": completion_response,
|
||||
},
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
model_response["choices"][0]["message"]["content"] = completion_response
|
||||
|
@ -432,16 +720,35 @@ def completion(
|
|||
model_response["model"] = model
|
||||
response = model_response
|
||||
|
||||
elif custom_llm_provider == "petals" or (litellm.api_base and "chat.petals.dev" in litellm.api_base):
|
||||
elif custom_llm_provider == "petals" or (
|
||||
litellm.api_base and "chat.petals.dev" in litellm.api_base
|
||||
):
|
||||
url = "https://chat.petals.dev/api/v1/generate"
|
||||
import requests
|
||||
|
||||
prompt = " ".join([message["content"] for message in messages])
|
||||
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
|
||||
response = requests.post(url, data={"inputs": prompt, "max_new_tokens": 100, "model": model})
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
response = requests.post(
|
||||
url, data={"inputs": prompt, "max_new_tokens": 100, "model": model}
|
||||
)
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": response}, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=prompt,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
additional_args={
|
||||
"max_tokens": max_tokens,
|
||||
"original_response": response,
|
||||
},
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
completion_response = response.json()["outputs"]
|
||||
|
||||
# RESPONSE OBJECT
|
||||
|
@ -451,15 +758,32 @@ def completion(
|
|||
response = model_response
|
||||
else:
|
||||
## LOGGING
|
||||
logging(model=model, input=messages, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
|
||||
logging(
|
||||
model=model,
|
||||
input=messages,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
args = locals()
|
||||
raise ValueError(f"Unable to map your input to a model. Check your input - {args}")
|
||||
raise ValueError(
|
||||
f"Unable to map your input to a model. Check your input - {args}"
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
## LOGGING
|
||||
logging(model=model, input=messages, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn, exception=e)
|
||||
logging(
|
||||
model=model,
|
||||
input=messages,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
additional_args={"max_tokens": max_tokens},
|
||||
logger_fn=logger_fn,
|
||||
exception=e,
|
||||
)
|
||||
## Map to OpenAI Exception
|
||||
raise exception_type(model=model, custom_llm_provider=custom_llm_provider, original_exception=e)
|
||||
raise exception_type(
|
||||
model=model, custom_llm_provider=custom_llm_provider, original_exception=e
|
||||
)
|
||||
|
||||
|
||||
def batch_completion(*args, **kwargs):
|
||||
batch_messages = args[1] if len(args) > 1 else kwargs.get("messages")
|
||||
|
@ -480,9 +804,12 @@ def batch_completion(*args, **kwargs):
|
|||
results = [future.result() for future in completions]
|
||||
return results
|
||||
|
||||
|
||||
### EMBEDDING ENDPOINTS ####################
|
||||
@client
|
||||
@timeout(60) ## set timeouts, in case calls hang (e.g. Azure) - default is 60s, override with `force_timeout`
|
||||
@timeout(
|
||||
60
|
||||
) ## set timeouts, in case calls hang (e.g. Azure) - default is 60s, override with `force_timeout`
|
||||
def embedding(model, input=[], azure=False, force_timeout=60, logger_fn=None):
|
||||
try:
|
||||
response = None
|
||||
|
@ -519,6 +846,8 @@ def embedding(model, input=[], azure=False, force_timeout=60, logger_fn=None):
|
|||
## Map to OpenAI Exception
|
||||
raise exception_type(model=model, original_exception=e)
|
||||
raise e
|
||||
|
||||
|
||||
####### HELPER FUNCTIONS ################
|
||||
## Set verbose to true -> ```litellm.set_verbose = True```
|
||||
def print_verbose(print_statement):
|
||||
|
@ -527,10 +856,13 @@ def print_verbose(print_statement):
|
|||
if random.random() <= 0.3:
|
||||
print("Get help - https://discord.com/invite/wuPM9dRgDw")
|
||||
|
||||
|
||||
def config_completion(**kwargs):
|
||||
if litellm.config_path != None:
|
||||
config_args = read_config_args(litellm.config_path)
|
||||
# overwrite any args passed in with config args
|
||||
return completion(**kwargs, **config_args)
|
||||
else:
|
||||
raise ValueError("No config path set, please set a config path using `litellm.config_path = 'path/to/config.json'`")
|
||||
raise ValueError(
|
||||
"No config path set, please set a config path using `litellm.config_path = 'path/to/config.json'`"
|
||||
)
|
||||
|
|
|
@ -3,9 +3,12 @@ import time
|
|||
from concurrent.futures import ThreadPoolExecutor
|
||||
import traceback
|
||||
|
||||
|
||||
def testing_batch_completion(*args, **kwargs):
|
||||
try:
|
||||
batch_models = args[0] if len(args) > 0 else kwargs.pop("models") ## expected input format- ["gpt-3.5-turbo", {"model": "qvv0xeq", "custom_llm_provider"="baseten"}...]
|
||||
batch_models = (
|
||||
args[0] if len(args) > 0 else kwargs.pop("models")
|
||||
) ## expected input format- ["gpt-3.5-turbo", {"model": "qvv0xeq", "custom_llm_provider"="baseten"}...]
|
||||
batch_messages = args[1] if len(args) > 1 else kwargs.pop("messages")
|
||||
results = []
|
||||
completions = []
|
||||
|
@ -18,16 +21,32 @@ def testing_batch_completion(*args, **kwargs):
|
|||
if len(args) > 0:
|
||||
args_modified[0] = model["model"]
|
||||
else:
|
||||
kwargs_modified["model"] = model["model"] if isinstance(model, dict) and "model" in model else model # if model is a dictionary get it's value else assume it's a string
|
||||
kwargs_modified["custom_llm_provider"] = model["custom_llm_provider"] if isinstance(model, dict) and "custom_llm_provider" in model else None
|
||||
kwargs_modified["custom_api_base"] = model["custom_api_base"] if isinstance(model, dict) and "custom_api_base" in model else None
|
||||
kwargs_modified["model"] = (
|
||||
model["model"]
|
||||
if isinstance(model, dict) and "model" in model
|
||||
else model
|
||||
) # if model is a dictionary get it's value else assume it's a string
|
||||
kwargs_modified["custom_llm_provider"] = (
|
||||
model["custom_llm_provider"]
|
||||
if isinstance(model, dict) and "custom_llm_provider" in model
|
||||
else None
|
||||
)
|
||||
kwargs_modified["custom_api_base"] = (
|
||||
model["custom_api_base"]
|
||||
if isinstance(model, dict) and "custom_api_base" in model
|
||||
else None
|
||||
)
|
||||
for message_list in batch_messages:
|
||||
if len(args) > 1:
|
||||
args_modified[1] = message_list
|
||||
future = executor.submit(litellm.completion, *args_modified, **kwargs_modified)
|
||||
future = executor.submit(
|
||||
litellm.completion, *args_modified, **kwargs_modified
|
||||
)
|
||||
else:
|
||||
kwargs_modified["messages"] = message_list
|
||||
future = executor.submit(litellm.completion, *args_modified, **kwargs_modified)
|
||||
future = executor.submit(
|
||||
litellm.completion, *args_modified, **kwargs_modified
|
||||
)
|
||||
completions.append((future, message_list))
|
||||
|
||||
# Retrieve the results and calculate elapsed time for each completion call
|
||||
|
@ -38,17 +57,27 @@ def testing_batch_completion(*args, **kwargs):
|
|||
result = future.result()
|
||||
end_time = time.time()
|
||||
elapsed_time = end_time - start_time
|
||||
result_dict = {"status": "succeeded", "response": future.result(), "prompt": message_list, "response_time": elapsed_time}
|
||||
result_dict = {
|
||||
"status": "succeeded",
|
||||
"response": future.result(),
|
||||
"prompt": message_list,
|
||||
"response_time": elapsed_time,
|
||||
}
|
||||
results.append(result_dict)
|
||||
except Exception as e:
|
||||
end_time = time.time()
|
||||
elapsed_time = end_time - start_time
|
||||
result_dict = {"status": "failed", "response": e, "response_time": elapsed_time}
|
||||
result_dict = {
|
||||
"status": "failed",
|
||||
"response": e,
|
||||
"response_time": elapsed_time,
|
||||
}
|
||||
results.append(result_dict)
|
||||
return results
|
||||
except:
|
||||
traceback.print_exc()
|
||||
|
||||
|
||||
def duration_test_model(original_function):
|
||||
def wrapper_function(*args, **kwargs):
|
||||
# Code to be executed before the original function
|
||||
|
@ -70,22 +99,39 @@ def duration_test_model(original_function):
|
|||
# Return the wrapper function
|
||||
return wrapper_function
|
||||
|
||||
|
||||
@duration_test_model
|
||||
def load_test_model(models: list, prompt: str = None, num_calls: int = None):
|
||||
test_calls = 100
|
||||
if num_calls:
|
||||
test_calls = num_calls
|
||||
input_prompt = prompt if prompt else "Hey, how's it going?"
|
||||
messages = [{"role": "user", "content": prompt}] if prompt else [{"role": "user", "content": input_prompt}]
|
||||
full_message_list = [messages for _ in range(test_calls)] # call it as many times as set by user to load test models
|
||||
messages = (
|
||||
[{"role": "user", "content": prompt}]
|
||||
if prompt
|
||||
else [{"role": "user", "content": input_prompt}]
|
||||
)
|
||||
full_message_list = [
|
||||
messages for _ in range(test_calls)
|
||||
] # call it as many times as set by user to load test models
|
||||
start_time = time.time()
|
||||
try:
|
||||
results = testing_batch_completion(models=models, messages=full_message_list)
|
||||
end_time = time.time()
|
||||
response_time = end_time - start_time
|
||||
return {"total_response_time": response_time, "calls_made": test_calls, "prompt": input_prompt, "results": results}
|
||||
return {
|
||||
"total_response_time": response_time,
|
||||
"calls_made": test_calls,
|
||||
"prompt": input_prompt,
|
||||
"results": results,
|
||||
}
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
end_time = time.time()
|
||||
response_time = end_time - start_time
|
||||
return {"total_response_time": response_time, "calls_made": test_calls, "prompt": input_prompt, "exception": e}
|
||||
return {
|
||||
"total_response_time": response_time,
|
||||
"calls_made": test_calls,
|
||||
"prompt": input_prompt,
|
||||
"exception": e,
|
||||
}
|
||||
|
|
|
@ -3,24 +3,34 @@
|
|||
|
||||
import sys, os
|
||||
import traceback
|
||||
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm import embedding, completion
|
||||
|
||||
litellm.set_verbose = False
|
||||
|
||||
|
||||
def logger_fn(model_call_object: dict):
|
||||
print(f"model call details: {model_call_object}")
|
||||
|
||||
|
||||
user_message = "Hello, how are you?"
|
||||
messages = [{ "content": user_message,"role": "user"}]
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
|
||||
## Test 1: Setting key dynamically
|
||||
temp_key = os.environ.get("ANTHROPIC_API_KEY")
|
||||
os.environ["ANTHROPIC_API_KEY"] = "bad-key"
|
||||
# test on openai completion call
|
||||
try:
|
||||
response = completion(model="claude-instant-1", messages=messages, logger_fn=logger_fn, api_key=temp_key)
|
||||
response = completion(
|
||||
model="claude-instant-1",
|
||||
messages=messages,
|
||||
logger_fn=logger_fn,
|
||||
api_key=temp_key,
|
||||
)
|
||||
print(f"response: {response}")
|
||||
except:
|
||||
print(f"error occurred: {traceback.format_exc()}")
|
||||
|
@ -33,7 +43,9 @@ litellm.anthropic_key = os.environ.get("ANTHROPIC_API_KEY")
|
|||
os.environ.pop("ANTHROPIC_API_KEY")
|
||||
# test on openai completion call
|
||||
try:
|
||||
response = completion(model="claude-instant-1", messages=messages, logger_fn=logger_fn)
|
||||
response = completion(
|
||||
model="claude-instant-1", messages=messages, logger_fn=logger_fn
|
||||
)
|
||||
print(f"response: {response}")
|
||||
except:
|
||||
print(f"error occurred: {traceback.format_exc()}")
|
||||
|
|
|
@ -5,17 +5,22 @@ import sys, os
|
|||
import pytest
|
||||
import traceback
|
||||
import asyncio
|
||||
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
from litellm import acompletion
|
||||
|
||||
|
||||
async def test_get_response():
|
||||
user_message = "Hello, how are you?"
|
||||
messages = [{ "content": user_message,"role": "user"}]
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
try:
|
||||
response = await acompletion(model="gpt-3.5-turbo", messages=messages)
|
||||
except Exception as e:
|
||||
pytest.fail(f"error occurred: {e}")
|
||||
return response
|
||||
|
||||
|
||||
response = asyncio.run(test_get_response())
|
||||
print(response)
|
|
@ -5,12 +5,13 @@
|
|||
import sys, os
|
||||
import traceback
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
# Get the current directory of the script
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
# Get the parent directory by joining the current directory with '..'
|
||||
parent_dir = os.path.join(current_dir, '../..')
|
||||
parent_dir = os.path.join(current_dir, "../..")
|
||||
|
||||
# Add the parent directory to the system path
|
||||
sys.path.append(parent_dir)
|
||||
|
@ -26,7 +27,7 @@ litellm.failure_callback = ["slack", "sentry", "posthog"]
|
|||
|
||||
|
||||
user_message = "Hello, how are you?"
|
||||
messages = [{ "content": user_message,"role": "user"}]
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
model_val = None
|
||||
|
||||
|
||||
|
@ -39,7 +40,7 @@ def test_completion_with_empty_model():
|
|||
pass
|
||||
|
||||
|
||||
#bad key
|
||||
# bad key
|
||||
temp_key = os.environ.get("OPENAI_API_KEY")
|
||||
os.environ["OPENAI_API_KEY"] = "bad-key"
|
||||
# test on openai completion call
|
||||
|
|
|
@ -3,7 +3,10 @@
|
|||
|
||||
import sys, os
|
||||
import traceback
|
||||
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm import batch_completion
|
||||
|
||||
|
|
|
@ -1,9 +1,13 @@
|
|||
import sys, os
|
||||
import traceback
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
import os
|
||||
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import pytest
|
||||
import litellm
|
||||
from litellm import embedding, completion
|
||||
|
@ -12,7 +16,6 @@ litellm.caching = True
|
|||
messages = [{"role": "user", "content": "who is ishaan Github? "}]
|
||||
|
||||
|
||||
|
||||
# test if response cached
|
||||
def test_caching():
|
||||
try:
|
||||
|
@ -29,7 +32,3 @@ def test_caching():
|
|||
litellm.caching = False
|
||||
print(f"error occurred: {traceback.format_exc()}")
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -5,7 +5,9 @@ import sys, os
|
|||
import traceback
|
||||
import pytest
|
||||
|
||||
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm import embedding, completion
|
||||
|
||||
|
@ -14,17 +16,22 @@ litellm.failure_callback = ["slack", "sentry", "posthog"]
|
|||
|
||||
litellm.set_verbose = True
|
||||
|
||||
|
||||
def logger_fn(model_call_object: dict):
|
||||
# print(f"model call details: {model_call_object}")
|
||||
pass
|
||||
|
||||
|
||||
user_message = "Hello, how are you?"
|
||||
messages = [{ "content": user_message,"role": "user"}]
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
|
||||
|
||||
def test_completion_openai():
|
||||
try:
|
||||
print("running query")
|
||||
response = completion(model="gpt-3.5-turbo", messages=messages, logger_fn=logger_fn)
|
||||
response = completion(
|
||||
model="gpt-3.5-turbo", messages=messages, logger_fn=logger_fn
|
||||
)
|
||||
print(f"response: {response}")
|
||||
# Add any assertions here to check the response
|
||||
except Exception as e:
|
||||
|
@ -34,33 +41,46 @@ def test_completion_openai():
|
|||
|
||||
def test_completion_claude():
|
||||
try:
|
||||
response = completion(model="claude-instant-1", messages=messages, logger_fn=logger_fn)
|
||||
response = completion(
|
||||
model="claude-instant-1", messages=messages, logger_fn=logger_fn
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_completion_non_openai():
|
||||
try:
|
||||
response = completion(model="command-nightly", messages=messages, logger_fn=logger_fn)
|
||||
response = completion(
|
||||
model="command-nightly", messages=messages, logger_fn=logger_fn
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_embedding_openai():
|
||||
try:
|
||||
response = embedding(model='text-embedding-ada-002', input=[user_message], logger_fn=logger_fn)
|
||||
response = embedding(
|
||||
model="text-embedding-ada-002", input=[user_message], logger_fn=logger_fn
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(f"response: {str(response)[:50]}")
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_bad_azure_embedding():
|
||||
try:
|
||||
response = embedding(model='chatgpt-test', input=[user_message], logger_fn=logger_fn)
|
||||
response = embedding(
|
||||
model="chatgpt-test", input=[user_message], logger_fn=logger_fn
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(f"response: {str(response)[:50]}")
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
|
||||
# def test_good_azure_embedding():
|
||||
# try:
|
||||
# response = embedding(model='azure-embedding-model', input=[user_message], azure=True, logger_fn=logger_fn)
|
||||
|
@ -68,4 +88,3 @@ def test_bad_azure_embedding():
|
|||
# print(f"response: {str(response)[:50]}")
|
||||
# except Exception as e:
|
||||
# pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
|
|
@ -1,44 +1,58 @@
|
|||
import sys, os
|
||||
import traceback
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
import os
|
||||
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import pytest
|
||||
import litellm
|
||||
from litellm import embedding, completion
|
||||
|
||||
# from infisical import InfisicalClient
|
||||
|
||||
# litellm.set_verbose = True
|
||||
# litellm.secret_manager_client = InfisicalClient(token=os.environ["INFISICAL_TOKEN"])
|
||||
|
||||
user_message = "Hello, whats the weather in San Francisco??"
|
||||
messages = [{ "content": user_message,"role": "user"}]
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
|
||||
|
||||
def logger_fn(user_model_dict):
|
||||
print(f"user_model_dict: {user_model_dict}")
|
||||
|
||||
|
||||
def test_completion_claude():
|
||||
try:
|
||||
response = completion(model="claude-instant-1", messages=messages, logger_fn=logger_fn)
|
||||
response = completion(
|
||||
model="claude-instant-1", messages=messages, logger_fn=logger_fn
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(response)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_completion_claude_stream():
|
||||
try:
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "how does a court case get to the Supreme Court?"}
|
||||
{
|
||||
"role": "user",
|
||||
"content": "how does a court case get to the Supreme Court?",
|
||||
},
|
||||
]
|
||||
response = completion(model="claude-2", messages=messages, stream=True)
|
||||
# Add any assertions here to check the response
|
||||
for chunk in response:
|
||||
print(chunk['choices'][0]['delta']) # same as openai format
|
||||
print(chunk["choices"][0]["delta"]) # same as openai format
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
# def test_completion_hf_api():
|
||||
# try:
|
||||
# user_message = "write some code to find the sum of two numbers"
|
||||
|
@ -62,10 +76,12 @@ def test_completion_claude_stream():
|
|||
|
||||
def test_completion_cohere():
|
||||
try:
|
||||
response = completion(model="command-nightly", messages=messages, max_tokens=100)
|
||||
response = completion(
|
||||
model="command-nightly", messages=messages, max_tokens=100
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(response)
|
||||
response_str = response['choices'][0]['message']['content']
|
||||
response_str = response["choices"][0]["message"]["content"]
|
||||
print(f"str response{response_str}")
|
||||
response_str_2 = response.choices[0].message.content
|
||||
if type(response_str) != str:
|
||||
|
@ -75,24 +91,31 @@ def test_completion_cohere():
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_completion_cohere_stream():
|
||||
try:
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "how does a court case get to the Supreme Court?"}
|
||||
{
|
||||
"role": "user",
|
||||
"content": "how does a court case get to the Supreme Court?",
|
||||
},
|
||||
]
|
||||
response = completion(model="command-nightly", messages=messages, stream=True, max_tokens=50)
|
||||
response = completion(
|
||||
model="command-nightly", messages=messages, stream=True, max_tokens=50
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
for chunk in response:
|
||||
print(chunk['choices'][0]['delta']) # same as openai format
|
||||
print(chunk["choices"][0]["delta"]) # same as openai format
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_completion_openai():
|
||||
try:
|
||||
response = completion(model="gpt-3.5-turbo", messages=messages)
|
||||
|
||||
response_str = response['choices'][0]['message']['content']
|
||||
response_str = response["choices"][0]["message"]["content"]
|
||||
response_str_2 = response.choices[0].message.content
|
||||
assert response_str == response_str_2
|
||||
assert type(response_str) == str
|
||||
|
@ -100,6 +123,7 @@ def test_completion_openai():
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_completion_text_openai():
|
||||
try:
|
||||
response = completion(model="text-davinci-003", messages=messages)
|
||||
|
@ -108,17 +132,31 @@ def test_completion_text_openai():
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_completion_openai_with_optional_params():
|
||||
try:
|
||||
response = completion(model="gpt-3.5-turbo", messages=messages, temperature=0.5, top_p=0.1, user="ishaan_dev@berri.ai")
|
||||
response = completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=messages,
|
||||
temperature=0.5,
|
||||
top_p=0.1,
|
||||
user="ishaan_dev@berri.ai",
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(response)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_completion_openrouter():
|
||||
try:
|
||||
response = completion(model="google/palm-2-chat-bison", messages=messages, temperature=0.5, top_p=0.1, user="ishaan_dev@berri.ai")
|
||||
response = completion(
|
||||
model="google/palm-2-chat-bison",
|
||||
messages=messages,
|
||||
temperature=0.5,
|
||||
top_p=0.1,
|
||||
user="ishaan_dev@berri.ai",
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(response)
|
||||
except Exception as e:
|
||||
|
@ -127,12 +165,23 @@ def test_completion_openrouter():
|
|||
|
||||
def test_completion_openai_with_more_optional_params():
|
||||
try:
|
||||
response = completion(model="gpt-3.5-turbo", messages=messages, temperature=0.5, top_p=0.1, n=2, max_tokens=150, presence_penalty=0.5, frequency_penalty=-0.5, logit_bias={123: 5}, user="ishaan_dev@berri.ai")
|
||||
response = completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=messages,
|
||||
temperature=0.5,
|
||||
top_p=0.1,
|
||||
n=2,
|
||||
max_tokens=150,
|
||||
presence_penalty=0.5,
|
||||
frequency_penalty=-0.5,
|
||||
logit_bias={123: 5},
|
||||
user="ishaan_dev@berri.ai",
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(response)
|
||||
response_str = response['choices'][0]['message']['content']
|
||||
response_str = response["choices"][0]["message"]["content"]
|
||||
response_str_2 = response.choices[0].message.content
|
||||
print(response['choices'][0]['message']['content'])
|
||||
print(response["choices"][0]["message"]["content"])
|
||||
print(response.choices[0].message.content)
|
||||
if type(response_str) != str:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
@ -141,14 +190,28 @@ def test_completion_openai_with_more_optional_params():
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_completion_openai_with_stream():
|
||||
try:
|
||||
response = completion(model="gpt-3.5-turbo", messages=messages, temperature=0.5, top_p=0.1, n=2, max_tokens=150, presence_penalty=0.5, stream=True, frequency_penalty=-0.5, logit_bias={27000: 5}, user="ishaan_dev@berri.ai")
|
||||
response = completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=messages,
|
||||
temperature=0.5,
|
||||
top_p=0.1,
|
||||
n=2,
|
||||
max_tokens=150,
|
||||
presence_penalty=0.5,
|
||||
stream=True,
|
||||
frequency_penalty=-0.5,
|
||||
logit_bias={27000: 5},
|
||||
user="ishaan_dev@berri.ai",
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(response)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_completion_openai_with_functions():
|
||||
function1 = [
|
||||
{
|
||||
|
@ -159,32 +222,38 @@ def test_completion_openai_with_functions():
|
|||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA"
|
||||
"description": "The city and state, e.g. San Francisco, CA",
|
||||
},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"enum": ["celsius", "fahrenheit"]
|
||||
}
|
||||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
"required": ["location"]
|
||||
}
|
||||
}
|
||||
]
|
||||
try:
|
||||
response = completion(model="gpt-3.5-turbo", messages=messages, functions=function1)
|
||||
response = completion(
|
||||
model="gpt-3.5-turbo", messages=messages, functions=function1
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(response)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_completion_azure():
|
||||
try:
|
||||
response = completion(model="gpt-3.5-turbo", deployment_id="chatgpt-test", messages=messages, custom_llm_provider="azure")
|
||||
response = completion(
|
||||
model="gpt-3.5-turbo",
|
||||
deployment_id="chatgpt-test",
|
||||
messages=messages,
|
||||
custom_llm_provider="azure",
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(response)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
# Replicate API endpoints are unstable -> throw random CUDA errors -> this means our tests can fail even if our tests weren't incorrect.
|
||||
def test_completion_replicate_llama_stream():
|
||||
model_name = "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
|
||||
|
@ -197,23 +266,32 @@ def test_completion_replicate_llama_stream():
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_completion_replicate_stability_stream():
|
||||
model_name = "stability-ai/stablelm-tuned-alpha-7b:c49dae362cbaecd2ceabb5bd34fdb68413c4ff775111fea065d259d577757beb"
|
||||
try:
|
||||
response = completion(model=model_name, messages=messages, stream=True, custom_llm_provider="replicate")
|
||||
response = completion(
|
||||
model=model_name,
|
||||
messages=messages,
|
||||
stream=True,
|
||||
custom_llm_provider="replicate",
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
for chunk in response:
|
||||
print(chunk['choices'][0]['delta'])
|
||||
print(chunk["choices"][0]["delta"])
|
||||
print(response)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_completion_replicate_stability():
|
||||
model_name = "stability-ai/stablelm-tuned-alpha-7b:c49dae362cbaecd2ceabb5bd34fdb68413c4ff775111fea065d259d577757beb"
|
||||
try:
|
||||
response = completion(model=model_name, messages=messages, custom_llm_provider="replicate")
|
||||
response = completion(
|
||||
model=model_name, messages=messages, custom_llm_provider="replicate"
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
response_str = response['choices'][0]['message']['content']
|
||||
response_str = response["choices"][0]["message"]["content"]
|
||||
response_str_2 = response.choices[0].message.content
|
||||
print(response_str)
|
||||
print(response_str_2)
|
||||
|
@ -224,6 +302,7 @@ def test_completion_replicate_stability():
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
######## Test TogetherAI ########
|
||||
def test_completion_together_ai():
|
||||
model_name = "togethercomputer/llama-2-70b-chat"
|
||||
|
@ -234,15 +313,22 @@ def test_completion_together_ai():
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_petals():
|
||||
model_name = "stabilityai/StableBeluga2"
|
||||
try:
|
||||
response = completion(model=model_name, messages=messages, custom_llm_provider="petals", force_timeout=120)
|
||||
response = completion(
|
||||
model=model_name,
|
||||
messages=messages,
|
||||
custom_llm_provider="petals",
|
||||
force_timeout=120,
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(response)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
# def test_baseten_falcon_7bcompletion():
|
||||
# model_name = "qvv0xeq"
|
||||
# try:
|
||||
|
@ -290,7 +376,6 @@ def test_petals():
|
|||
# pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
|
||||
#### Test A121 ###################
|
||||
# def test_completion_ai21():
|
||||
# model_name = "j2-light"
|
||||
|
@ -333,4 +418,3 @@ def test_petals():
|
|||
# return
|
||||
|
||||
# test_completion_together_ai_stream()
|
||||
|
||||
|
|
|
@ -1,14 +1,21 @@
|
|||
import sys, os
|
||||
import traceback
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
import os
|
||||
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm import completion
|
||||
|
||||
|
||||
def logging_fn(model_call_dict):
|
||||
print(f"model call details: {model_call_dict}")
|
||||
|
||||
|
||||
models = ["gorilla-7b-hf-v1", "gpt-4"]
|
||||
custom_llm_provider = None
|
||||
messages = [{"role": "user", "content": "Hey, how's it going?"}]
|
||||
|
@ -17,4 +24,10 @@ for model in models: # iterate through list
|
|||
if model == "gorilla-7b-hf-v1":
|
||||
custom_llm_provider = "custom_openai"
|
||||
custom_api_base = "http://zanino.millennium.berkeley.edu:8000/v1"
|
||||
completion(model=model, messages=messages, custom_llm_provider=custom_llm_provider, custom_api_base=custom_api_base, logger_fn=logging_fn)
|
||||
completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
custom_api_base=custom_api_base,
|
||||
logger_fn=logging_fn,
|
||||
)
|
||||
|
|
|
@ -1,9 +1,10 @@
|
|||
|
||||
import sys, os
|
||||
import traceback
|
||||
import pytest
|
||||
|
||||
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm import embedding, completion
|
||||
from infisical import InfisicalClient
|
||||
|
@ -11,9 +12,12 @@ from infisical import InfisicalClient
|
|||
# # litellm.set_verbose = True
|
||||
# litellm.secret_manager_client = InfisicalClient(token=os.environ["INFISICAL_TOKEN"])
|
||||
|
||||
|
||||
def test_openai_embedding():
|
||||
try:
|
||||
response = embedding(model='text-embedding-ada-002', input=["good morning from litellm"])
|
||||
response = embedding(
|
||||
model="text-embedding-ada-002", input=["good morning from litellm"]
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(f"response: {str(response)}")
|
||||
except Exception as e:
|
||||
|
|
|
@ -2,9 +2,20 @@
|
|||
import os
|
||||
import sys
|
||||
import traceback
|
||||
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm import embedding, completion, AuthenticationError, InvalidRequestError, RateLimitError, ServiceUnavailableError, OpenAIError
|
||||
from litellm import (
|
||||
embedding,
|
||||
completion,
|
||||
AuthenticationError,
|
||||
InvalidRequestError,
|
||||
RateLimitError,
|
||||
ServiceUnavailableError,
|
||||
OpenAIError,
|
||||
)
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
import pytest
|
||||
|
||||
|
@ -23,6 +34,8 @@ litellm.failure_callback = ["sentry"]
|
|||
# models = ["gpt-3.5-turbo", "chatgpt-test", "claude-instant-1", "command-nightly"]
|
||||
test_model = "claude-instant-1"
|
||||
models = ["claude-instant-1"]
|
||||
|
||||
|
||||
def logging_fn(model_call_dict):
|
||||
if "model" in model_call_dict:
|
||||
print(f"model_call_dict: {model_call_dict['model']}")
|
||||
|
@ -38,7 +51,12 @@ def test_context_window(model):
|
|||
try:
|
||||
model = "chatgpt-test"
|
||||
print(f"model: {model}")
|
||||
response = completion(model=model, messages=messages, custom_llm_provider="azure", logger_fn=logging_fn)
|
||||
response = completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
custom_llm_provider="azure",
|
||||
logger_fn=logging_fn,
|
||||
)
|
||||
print(f"response: {response}")
|
||||
except InvalidRequestError as e:
|
||||
print(f"InvalidRequestError: {e.llm_provider}")
|
||||
|
@ -52,12 +70,15 @@ def test_context_window(model):
|
|||
print(f"Uncaught Exception - {e}")
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
return
|
||||
|
||||
|
||||
test_context_window(test_model)
|
||||
|
||||
|
||||
# Test 2: InvalidAuth Errors
|
||||
@pytest.mark.parametrize("model", models)
|
||||
def invalid_auth(model): # set the model key to an invalid key, depending on the model
|
||||
messages = [{ "content": "Hello, how are you?","role": "user"}]
|
||||
messages = [{"content": "Hello, how are you?", "role": "user"}]
|
||||
temporary_key = None
|
||||
try:
|
||||
custom_llm_provider = None
|
||||
|
@ -74,15 +95,22 @@ def invalid_auth(model): # set the model key to an invalid key, depending on the
|
|||
elif model == "command-nightly":
|
||||
temporary_key = os.environ["COHERE_API_KEY"]
|
||||
os.environ["COHERE_API_KEY"] = "bad-key"
|
||||
elif model == "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1":
|
||||
elif (
|
||||
model
|
||||
== "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
|
||||
):
|
||||
temporary_key = os.environ["REPLICATE_API_KEY"]
|
||||
os.environ["REPLICATE_API_KEY"] = "bad-key"
|
||||
print(f"model: {model}")
|
||||
response = completion(model=model, messages=messages, custom_llm_provider=custom_llm_provider)
|
||||
response = completion(
|
||||
model=model, messages=messages, custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
print(f"response: {response}")
|
||||
except AuthenticationError as e:
|
||||
print(f"AuthenticationError Caught Exception - {e.llm_provider}")
|
||||
except OpenAIError: # is at least an openai error -> in case of random model errors - e.g. overloaded server
|
||||
except (
|
||||
OpenAIError
|
||||
): # is at least an openai error -> in case of random model errors - e.g. overloaded server
|
||||
print(f"OpenAIError Caught Exception - {e}")
|
||||
except Exception as e:
|
||||
print(type(e))
|
||||
|
@ -99,9 +127,14 @@ def invalid_auth(model): # set the model key to an invalid key, depending on the
|
|||
os.environ["ANTHROPIC_API_KEY"] = temporary_key
|
||||
elif model == "command-nightly":
|
||||
os.environ["COHERE_API_KEY"] = temporary_key
|
||||
elif model == "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1":
|
||||
elif (
|
||||
model
|
||||
== "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
|
||||
):
|
||||
os.environ["REPLICATE_API_KEY"] = temporary_key
|
||||
return
|
||||
|
||||
|
||||
invalid_auth(test_model)
|
||||
# # Test 3: Rate Limit Errors
|
||||
# def test_model(model):
|
||||
|
@ -142,5 +175,3 @@ invalid_auth(test_model)
|
|||
|
||||
# accuracy_score = counts[True]/(counts[True] + counts[False])
|
||||
# print(f"accuracy_score: {accuracy_score}")
|
||||
|
||||
|
||||
|
|
|
@ -5,7 +5,9 @@ import sys, os
|
|||
import traceback
|
||||
import pytest
|
||||
|
||||
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm import embedding, completion
|
||||
|
||||
|
@ -14,11 +16,15 @@ litellm.success_callback = ["helicone"]
|
|||
litellm.set_verbose = True
|
||||
|
||||
user_message = "Hello, how are you?"
|
||||
messages = [{ "content": user_message,"role": "user"}]
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
|
||||
|
||||
#openai call
|
||||
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])
|
||||
# openai call
|
||||
response = completion(
|
||||
model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}]
|
||||
)
|
||||
|
||||
#cohere call
|
||||
response = completion(model="command-nightly", messages=[{"role": "user", "content": "Hi 👋 - i'm cohere"}])
|
||||
# cohere call
|
||||
response = completion(
|
||||
model="command-nightly", messages=[{"role": "user", "content": "Hi 👋 - i'm cohere"}]
|
||||
)
|
||||
|
|
|
@ -1,6 +1,9 @@
|
|||
import sys, os
|
||||
import traceback
|
||||
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm import load_test_model, testing_batch_completion
|
||||
|
||||
|
@ -16,7 +19,19 @@ from litellm import load_test_model, testing_batch_completion
|
|||
# print(result)
|
||||
|
||||
## Quality Test across Model
|
||||
models = ["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-4", "claude-instant-1", {"model": "replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781", "custom_llm_provider": "replicate"}]
|
||||
messages = [[{"role": "user", "content": "What is your name?"}], [{"role": "user", "content": "Hey, how's it going?"}]]
|
||||
models = [
|
||||
"gpt-3.5-turbo",
|
||||
"gpt-3.5-turbo-16k",
|
||||
"gpt-4",
|
||||
"claude-instant-1",
|
||||
{
|
||||
"model": "replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781",
|
||||
"custom_llm_provider": "replicate",
|
||||
},
|
||||
]
|
||||
messages = [
|
||||
[{"role": "user", "content": "What is your name?"}],
|
||||
[{"role": "user", "content": "Hey, how's it going?"}],
|
||||
]
|
||||
result = testing_batch_completion(models=models, messages=messages)
|
||||
print(result)
|
|
@ -3,7 +3,10 @@
|
|||
|
||||
import sys, os
|
||||
import traceback
|
||||
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm import embedding, completion
|
||||
|
||||
|
@ -11,25 +14,29 @@ litellm.set_verbose = False
|
|||
|
||||
score = 0
|
||||
|
||||
|
||||
def logger_fn(model_call_object: dict):
|
||||
print(f"model call details: {model_call_object}")
|
||||
|
||||
|
||||
user_message = "Hello, how are you?"
|
||||
messages = [{ "content": user_message,"role": "user"}]
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
|
||||
# test on openai completion call
|
||||
try:
|
||||
response = completion(model="gpt-3.5-turbo", messages=messages, logger_fn=logger_fn)
|
||||
score +=1
|
||||
score += 1
|
||||
except:
|
||||
print(f"error occurred: {traceback.format_exc()}")
|
||||
pass
|
||||
|
||||
# test on non-openai completion call
|
||||
try:
|
||||
response = completion(model="claude-instant-1", messages=messages, logger_fn=logger_fn)
|
||||
response = completion(
|
||||
model="claude-instant-1", messages=messages, logger_fn=logger_fn
|
||||
)
|
||||
print(f"claude response: {response}")
|
||||
score +=1
|
||||
score += 1
|
||||
except:
|
||||
print(f"error occurred: {traceback.format_exc()}")
|
||||
pass
|
||||
|
|
|
@ -3,7 +3,10 @@
|
|||
|
||||
import sys, os
|
||||
import traceback
|
||||
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm import embedding, completion
|
||||
|
||||
|
@ -15,7 +18,7 @@ litellm.set_verbose = True
|
|||
model_fallback_list = ["claude-instant-1", "gpt-3.5-turbo", "chatgpt-test"]
|
||||
|
||||
user_message = "Hello, how are you?"
|
||||
messages = [{ "content": user_message,"role": "user"}]
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
|
||||
for model in model_fallback_list:
|
||||
try:
|
||||
|
|
|
@ -4,7 +4,10 @@
|
|||
|
||||
import sys, os
|
||||
import traceback
|
||||
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm import embedding, completion
|
||||
|
||||
|
@ -13,7 +16,7 @@ litellm.set_verbose = True
|
|||
model_fallback_list = ["claude-instant-1", "gpt-3.5-turbo", "chatgpt-test"]
|
||||
|
||||
user_message = "Hello, how are you?"
|
||||
messages = [{ "content": user_message,"role": "user"}]
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
|
||||
for model in model_fallback_list:
|
||||
try:
|
||||
|
|
|
@ -53,7 +53,6 @@
|
|||
# # # return this generator to the client for streaming requests
|
||||
|
||||
|
||||
|
||||
# # async def get_response():
|
||||
# # global generator
|
||||
# # async for elem in generator:
|
||||
|
|
|
@ -12,7 +12,6 @@
|
|||
# import asyncio
|
||||
|
||||
|
||||
|
||||
# user_message = "respond in 20 words. who are you?"
|
||||
# messages = [{ "content": user_message,"role": "user"}]
|
||||
|
||||
|
@ -45,8 +44,3 @@
|
|||
# pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# test_completion_ollama_stream()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -4,7 +4,10 @@
|
|||
|
||||
import sys, os
|
||||
import traceback
|
||||
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm import embedding, completion
|
||||
from infisical import InfisicalClient
|
||||
|
@ -15,7 +18,7 @@ infisical_token = os.environ["INFISICAL_TOKEN"]
|
|||
litellm.secret_manager_client = InfisicalClient(token=infisical_token)
|
||||
|
||||
user_message = "Hello, whats the weather in San Francisco??"
|
||||
messages = [{ "content": user_message,"role": "user"}]
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
|
||||
|
||||
def test_completion_openai():
|
||||
|
@ -28,5 +31,5 @@ def test_completion_openai():
|
|||
pytest.fail(f"Error occurred: {e}")
|
||||
litellm.secret_manager_client = None
|
||||
|
||||
test_completion_openai()
|
||||
|
||||
test_completion_openai()
|
||||
|
|
|
@ -3,7 +3,10 @@
|
|||
|
||||
import sys, os
|
||||
import traceback
|
||||
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm import completion
|
||||
|
||||
|
@ -11,18 +14,22 @@ litellm.set_verbose = False
|
|||
|
||||
score = 0
|
||||
|
||||
|
||||
def logger_fn(model_call_object: dict):
|
||||
print(f"model call details: {model_call_object}")
|
||||
|
||||
|
||||
user_message = "Hello, how are you?"
|
||||
messages = [{ "content": user_message,"role": "user"}]
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
|
||||
# test on anthropic completion call
|
||||
try:
|
||||
response = completion(model="claude-instant-1", messages=messages, stream=True, logger_fn=logger_fn)
|
||||
response = completion(
|
||||
model="claude-instant-1", messages=messages, stream=True, logger_fn=logger_fn
|
||||
)
|
||||
for chunk in response:
|
||||
print(chunk['choices'][0]['delta'])
|
||||
score +=1
|
||||
print(chunk["choices"][0]["delta"])
|
||||
score += 1
|
||||
except:
|
||||
print(f"error occurred: {traceback.format_exc()}")
|
||||
pass
|
||||
|
@ -30,10 +37,17 @@ except:
|
|||
|
||||
# test on anthropic completion call
|
||||
try:
|
||||
response = completion(model="meta-llama/Llama-2-7b-chat-hf", messages=messages, custom_llm_provider="huggingface", custom_api_base="https://s7c7gytn18vnu4tw.us-east-1.aws.endpoints.huggingface.cloud", stream=True, logger_fn=logger_fn)
|
||||
response = completion(
|
||||
model="meta-llama/Llama-2-7b-chat-hf",
|
||||
messages=messages,
|
||||
custom_llm_provider="huggingface",
|
||||
custom_api_base="https://s7c7gytn18vnu4tw.us-east-1.aws.endpoints.huggingface.cloud",
|
||||
stream=True,
|
||||
logger_fn=logger_fn,
|
||||
)
|
||||
for chunk in response:
|
||||
print(chunk['choices'][0]['delta'])
|
||||
score +=1
|
||||
print(chunk["choices"][0]["delta"])
|
||||
score += 1
|
||||
except:
|
||||
print(f"error occurred: {traceback.format_exc()}")
|
||||
pass
|
|
@ -3,10 +3,14 @@
|
|||
|
||||
import sys, os
|
||||
import traceback
|
||||
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import time
|
||||
from litellm import timeout
|
||||
|
||||
|
||||
@timeout(10)
|
||||
def stop_after_10_s(force_timeout=60):
|
||||
print("Stopping after 10 seconds")
|
||||
|
|
|
@ -11,9 +11,7 @@ from threading import Thread
|
|||
from openai.error import Timeout
|
||||
|
||||
|
||||
def timeout(
|
||||
timeout_duration: float = None, exception_to_raise = Timeout
|
||||
):
|
||||
def timeout(timeout_duration: float = None, exception_to_raise=Timeout):
|
||||
"""
|
||||
Wraps a function to raise the specified exception if execution time
|
||||
is greater than the specified timeout.
|
||||
|
@ -44,7 +42,9 @@ def timeout(
|
|||
result = future.result(timeout=local_timeout_duration)
|
||||
except futures.TimeoutError:
|
||||
thread.stop_loop()
|
||||
raise exception_to_raise(f"A timeout error occurred. The function call took longer than {local_timeout_duration} second(s).")
|
||||
raise exception_to_raise(
|
||||
f"A timeout error occurred. The function call took longer than {local_timeout_duration} second(s)."
|
||||
)
|
||||
thread.stop_loop()
|
||||
return result
|
||||
|
||||
|
@ -59,7 +59,9 @@ def timeout(
|
|||
)
|
||||
return value
|
||||
except asyncio.TimeoutError:
|
||||
raise exception_to_raise(f"A timeout error occurred. The function call took longer than {local_timeout_duration} second(s).")
|
||||
raise exception_to_raise(
|
||||
f"A timeout error occurred. The function call took longer than {local_timeout_duration} second(s)."
|
||||
)
|
||||
|
||||
if iscoroutinefunction(func):
|
||||
return async_wrapper
|
||||
|
|
555
litellm/utils.py
555
litellm/utils.py
File diff suppressed because it is too large
Load diff
Loading…
Add table
Add a link
Reference in a new issue