mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
(docs) load test litellm
This commit is contained in:
parent
321769a74d
commit
2d71f54afb
3 changed files with 81 additions and 15 deletions
|
@ -1,5 +1,84 @@
|
||||||
|
import Image from '@theme/IdealImage';
|
||||||
|
|
||||||
# 🔥 Load Test LiteLLM
|
# 🔥 Load Test LiteLLM
|
||||||
|
|
||||||
|
## Load Test LiteLLM Proxy - 1500+ req/s
|
||||||
|
|
||||||
|
## 1500+ concurrent requests/s
|
||||||
|
|
||||||
|
LiteLLM proxy has been load tested to handle 1500+ concurrent req/s
|
||||||
|
|
||||||
|
```python
|
||||||
|
import time, asyncio
|
||||||
|
from openai import AsyncOpenAI, AsyncAzureOpenAI
|
||||||
|
import uuid
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
# base_url - litellm proxy endpoint
|
||||||
|
# api_key - litellm proxy api-key, is created proxy with auth
|
||||||
|
litellm_client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234")
|
||||||
|
|
||||||
|
|
||||||
|
async def litellm_completion():
|
||||||
|
# Your existing code for litellm_completion goes here
|
||||||
|
try:
|
||||||
|
response = await litellm_client.chat.completions.create(
|
||||||
|
model="azure-gpt-3.5",
|
||||||
|
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
|
||||||
|
)
|
||||||
|
print(response)
|
||||||
|
return response
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
# If there's an exception, log the error message
|
||||||
|
with open("error_log.txt", "a") as error_log:
|
||||||
|
error_log.write(f"Error during completion: {str(e)}\n")
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
for i in range(1):
|
||||||
|
start = time.time()
|
||||||
|
n = 1500 # Number of concurrent tasks
|
||||||
|
tasks = [litellm_completion() for _ in range(n)]
|
||||||
|
|
||||||
|
chat_completions = await asyncio.gather(*tasks)
|
||||||
|
|
||||||
|
successful_completions = [c for c in chat_completions if c is not None]
|
||||||
|
|
||||||
|
# Write errors to error_log.txt
|
||||||
|
with open("error_log.txt", "a") as error_log:
|
||||||
|
for completion in chat_completions:
|
||||||
|
if isinstance(completion, str):
|
||||||
|
error_log.write(completion + "\n")
|
||||||
|
|
||||||
|
print(n, time.time() - start, len(successful_completions))
|
||||||
|
time.sleep(10)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Blank out contents of error_log.txt
|
||||||
|
open("error_log.txt", "w").close()
|
||||||
|
|
||||||
|
asyncio.run(main())
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
### Throughput - 30% Increase
|
||||||
|
LiteLLM proxy + Load Balancer gives **30% increase** in throughput compared to Raw OpenAI API
|
||||||
|
<Image img={require('../img/throughput.png')} />
|
||||||
|
|
||||||
|
### Latency Added - 0.00325 seconds
|
||||||
|
LiteLLM proxy adds **0.00325 seconds** latency as compared to using the Raw OpenAI API
|
||||||
|
<Image img={require('../img/latency.png')} />
|
||||||
|
|
||||||
|
|
||||||
|
### Testing LiteLLM Proxy with Locust
|
||||||
|
- 1 LiteLLM container can handle ~140 requests/second with 0.4 failures
|
||||||
|
|
||||||
|
<Image img={require('../img/locust.png')} />
|
||||||
|
|
||||||
|
## Load Test LiteLLM SDK vs OpenAI
|
||||||
Here is a script to load test LiteLLM vs OpenAI
|
Here is a script to load test LiteLLM vs OpenAI
|
||||||
|
|
||||||
```python
|
```python
|
||||||
|
@ -84,4 +163,5 @@ async def loadtest_fn():
|
||||||
# Run the event loop to execute the async function
|
# Run the event loop to execute the async function
|
||||||
asyncio.run(loadtest_fn())
|
asyncio.run(loadtest_fn())
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
|
@ -350,17 +350,3 @@ Run the command `docker-compose up` or `docker compose up` as per your docker in
|
||||||
|
|
||||||
|
|
||||||
Your LiteLLM container should be running now on the defined port e.g. `8000`.
|
Your LiteLLM container should be running now on the defined port e.g. `8000`.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## LiteLLM Proxy Performance
|
|
||||||
|
|
||||||
LiteLLM proxy has been load tested to handle 1500 req/s.
|
|
||||||
|
|
||||||
### Throughput - 30% Increase
|
|
||||||
LiteLLM proxy + Load Balancer gives **30% increase** in throughput compared to Raw OpenAI API
|
|
||||||
<Image img={require('../../img/throughput.png')} />
|
|
||||||
|
|
||||||
### Latency Added - 0.00325 seconds
|
|
||||||
LiteLLM proxy adds **0.00325 seconds** latency as compared to using the Raw OpenAI API
|
|
||||||
<Image img={require('../../img/latency.png')} />
|
|
||||||
|
|
BIN
docs/my-website/img/locust.png
Normal file
BIN
docs/my-website/img/locust.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 109 KiB |
Loading…
Add table
Add a link
Reference in a new issue