mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
LiteLLM Minor Fixes & Improvements (10/04/2024) (#6064)
* fix(litellm_logging.py): ensure cache hits are scrubbed if 'turn_off_message_logging' is enabled * fix(sagemaker.py): fix streaming to raise error immediately Fixes https://github.com/BerriAI/litellm/issues/6054 * (fixes) gcs bucket key based logging (#6044) * fixes for gcs bucket logging * fix StandardCallbackDynamicParams * fix - gcs logging when payload is not serializable * add test_add_callback_via_key_litellm_pre_call_utils_gcs_bucket * working success callbacks * linting fixes * fix linting error * add type hints to functions * fixes for dynamic success and failure logging * fix for test_async_chat_openai_stream * fix handle case when key based logging vars are set as os.environ/ vars * fix prometheus track cooldown events on custom logger (#6060) * (docs) add 1k rps load test doc (#6059) * docs 1k rps load test * docs load testing * docs load testing litellm * docs load testing * clean up load test doc * docs prom metrics for load testing * docs using prometheus on load testing * doc load testing with prometheus * (fixes) docs + qa - gcs key based logging (#6061) * fixes for required values for gcs bucket * docs gcs bucket logging * bump: version 1.48.12 → 1.48.13 * ci/cd run again * bump: version 1.48.13 → 1.48.14 * update load test doc * (docs) router settings - on litellm config (#6037) * add yaml with all router settings * add docs for router settings * docs router settings litellm settings * (feat) OpenAI prompt caching models to model cost map (#6063) * add prompt caching for latest models * add cache_read_input_token_cost for prompt caching models * fix(litellm_logging.py): check if param is iterable Fixes https://github.com/BerriAI/litellm/issues/6025#issuecomment-2393929946 * fix(factory.py): support passing an 'assistant_continue_message' to prevent bedrock error Fixes https://github.com/BerriAI/litellm/issues/6053 * fix(databricks/chat): handle streaming responses * fix(factory.py): fix linting error * fix(utils.py): unify anthropic + deepseek prompt caching information to openai format Fixes https://github.com/BerriAI/litellm/issues/6069 * test: fix test * fix(types/utils.py): support all openai roles Fixes https://github.com/BerriAI/litellm/issues/6052 * test: fix test --------- Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
This commit is contained in:
parent
fc6e0dd6cb
commit
2e5c46ef6d
19 changed files with 1034 additions and 259 deletions
|
@ -54,10 +54,10 @@ class ModelResponseIterator:
|
|||
is_finished = True
|
||||
finish_reason = processed_chunk.choices[0].finish_reason
|
||||
|
||||
if hasattr(processed_chunk, "usage") and isinstance(
|
||||
processed_chunk.usage, litellm.Usage
|
||||
):
|
||||
usage_chunk: litellm.Usage = processed_chunk.usage
|
||||
usage_chunk: Optional[litellm.Usage] = getattr(
|
||||
processed_chunk, "usage", None
|
||||
)
|
||||
if usage_chunk is not None:
|
||||
|
||||
usage = ChatCompletionUsageBlock(
|
||||
prompt_tokens=usage_chunk.prompt_tokens,
|
||||
|
@ -82,6 +82,8 @@ class ModelResponseIterator:
|
|||
return self
|
||||
|
||||
def __next__(self):
|
||||
if not hasattr(self, "response_iterator"):
|
||||
self.response_iterator = self.streaming_response
|
||||
try:
|
||||
chunk = self.response_iterator.__next__()
|
||||
except StopIteration:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue