docs(routing.md): make title more clear

This commit is contained in:
Krrish Dholakia 2023-10-18 16:39:05 -07:00
parent 07b6b2f44e
commit 2e5db47ad0
2 changed files with 69 additions and 2 deletions

View file

@ -58,4 +58,71 @@ response = litellm.completion(
| gpt-3.5-turbo-0301 | `completion('azure/<your deployment name>', messages)` |
| gpt-3.5-turbo-0613 | `completion('azure/<your deployment name>', messages)` |
| gpt-3.5-turbo-16k | `completion('azure/<your deployment name>', messages)` |
| gpt-3.5-turbo-16k-0613 | `completion('azure/<your deployment name>', messages)`
| gpt-3.5-turbo-16k-0613 | `completion('azure/<your deployment name>', messages)`
## Azure API Load-Balancing
Use this if you're trying to load-balance across multiple Azure/OpenAI deployments.
`Router` prevents failed requests, by picking the deployment which is below rate-limit and has the least amount of tokens used.
In production, [Router connects to a Redis Cache](#redis-queue) to track usage across multiple deployments.
### Quick Start
```python
pip install litellm
```
```python
from litellm import Router
model_list = [{ # list of model deployments
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
}, {
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
}, {
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
}]
router = Router(model_list=model_list)
# openai.ChatCompletion.create replacement
response = router.completion(model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}]
print(response)
```
### Redis Queue
```python
router = Router(model_list=model_list,
redis_host=os.getenv("REDIS_HOST"),
redis_password=os.getenv("REDIS_PASSWORD"),
redis_port=os.getenv("REDIS_PORT"))
print(response)
```

View file

@ -1,4 +1,4 @@
# LLM API Load-Balancing
# Azure API Load-Balancing
Use this if you're trying to load-balance across multiple Azure/OpenAI deployments.