(Feat) - new endpoint GET /v1/fine_tuning/jobs/{fine_tuning_job_id:path} (#7427)

* init commit ft jobs logging

* add ft logging

* add logging for FineTuningJob

* simple FT Job create test

* simplify Azure fine tuning to use all methods in OAI ft

* update doc string

* add aretrieve_fine_tuning_job

* re use from litellm.proxy.utils import handle_exception_on_proxy

* fix naming

* add /fine_tuning/jobs/{fine_tuning_job_id:path}

* remove unused imports

* update func signature

* run ci/cd again

* ci/cd run again

* fix code qulity

* ci/cd run again
This commit is contained in:
Ishaan Jaff 2024-12-27 17:01:14 -08:00 committed by GitHub
parent 5e8c64f128
commit 2ece919f01
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 400 additions and 227 deletions

View file

@ -171,6 +171,7 @@ def create_fine_tuning_job(
response = openai_fine_tuning_apis_instance.create_fine_tuning_job(
api_base=api_base,
api_key=api_key,
api_version=optional_params.api_version,
organization=organization,
create_fine_tuning_job_data=create_fine_tuning_job_data_dict,
timeout=timeout,
@ -223,6 +224,7 @@ def create_fine_tuning_job(
timeout=timeout,
max_retries=optional_params.max_retries,
_is_async=_is_async,
organization=optional_params.organization,
)
elif custom_llm_provider == "vertex_ai":
api_base = optional_params.api_base or ""
@ -279,7 +281,7 @@ def create_fine_tuning_job(
async def acancel_fine_tuning_job(
fine_tuning_job_id: str,
custom_llm_provider: Literal["openai"] = "openai",
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
extra_headers: Optional[Dict[str, str]] = None,
extra_body: Optional[Dict[str, str]] = None,
**kwargs,
@ -374,6 +376,7 @@ def cancel_fine_tuning_job(
response = openai_fine_tuning_apis_instance.cancel_fine_tuning_job(
api_base=api_base,
api_key=api_key,
api_version=optional_params.api_version,
organization=organization,
fine_tuning_job_id=fine_tuning_job_id,
timeout=timeout,
@ -412,6 +415,7 @@ def cancel_fine_tuning_job(
timeout=timeout,
max_retries=optional_params.max_retries,
_is_async=_is_async,
organization=optional_params.organization,
)
else:
raise litellm.exceptions.BadRequestError(
@ -434,7 +438,7 @@ def cancel_fine_tuning_job(
async def alist_fine_tuning_jobs(
after: Optional[str] = None,
limit: Optional[int] = None,
custom_llm_provider: Literal["openai"] = "openai",
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
extra_headers: Optional[Dict[str, str]] = None,
extra_body: Optional[Dict[str, str]] = None,
**kwargs,
@ -533,6 +537,7 @@ def list_fine_tuning_jobs(
response = openai_fine_tuning_apis_instance.list_fine_tuning_jobs(
api_base=api_base,
api_key=api_key,
api_version=optional_params.api_version,
organization=organization,
after=after,
limit=limit,
@ -573,6 +578,7 @@ def list_fine_tuning_jobs(
timeout=timeout,
max_retries=optional_params.max_retries,
_is_async=_is_async,
organization=optional_params.organization,
)
else:
raise litellm.exceptions.BadRequestError(
@ -590,3 +596,153 @@ def list_fine_tuning_jobs(
return response
except Exception as e:
raise e
async def aretrieve_fine_tuning_job(
fine_tuning_job_id: str,
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
extra_headers: Optional[Dict[str, str]] = None,
extra_body: Optional[Dict[str, str]] = None,
**kwargs,
) -> FineTuningJob:
"""
Async: Get info about a fine-tuning job.
"""
try:
loop = asyncio.get_event_loop()
kwargs["aretrieve_fine_tuning_job"] = True
# Use a partial function to pass your keyword arguments
func = partial(
retrieve_fine_tuning_job,
fine_tuning_job_id,
custom_llm_provider,
extra_headers,
extra_body,
**kwargs,
)
# Add the context to the function
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
init_response = await loop.run_in_executor(None, func_with_context)
if asyncio.iscoroutine(init_response):
response = await init_response
else:
response = init_response # type: ignore
return response
except Exception as e:
raise e
def retrieve_fine_tuning_job(
fine_tuning_job_id: str,
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
extra_headers: Optional[Dict[str, str]] = None,
extra_body: Optional[Dict[str, str]] = None,
**kwargs,
) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]:
"""
Get info about a fine-tuning job.
"""
try:
optional_params = GenericLiteLLMParams(**kwargs)
### TIMEOUT LOGIC ###
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
# set timeout for 10 minutes by default
if (
timeout is not None
and isinstance(timeout, httpx.Timeout)
and supports_httpx_timeout(custom_llm_provider) is False
):
read_timeout = timeout.read or 600
timeout = read_timeout # default 10 min timeout
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
timeout = float(timeout) # type: ignore
elif timeout is None:
timeout = 600.0
_is_async = kwargs.pop("aretrieve_fine_tuning_job", False) is True
# OpenAI
if custom_llm_provider == "openai":
api_base = (
optional_params.api_base
or litellm.api_base
or os.getenv("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
organization = (
optional_params.organization
or litellm.organization
or os.getenv("OPENAI_ORGANIZATION", None)
or None
)
api_key = (
optional_params.api_key
or litellm.api_key
or litellm.openai_key
or os.getenv("OPENAI_API_KEY")
)
response = openai_fine_tuning_apis_instance.retrieve_fine_tuning_job(
api_base=api_base,
api_key=api_key,
api_version=optional_params.api_version,
organization=organization,
fine_tuning_job_id=fine_tuning_job_id,
timeout=timeout,
max_retries=optional_params.max_retries,
_is_async=_is_async,
)
# Azure OpenAI
elif custom_llm_provider == "azure":
api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") # type: ignore
api_version = (
optional_params.api_version
or litellm.api_version
or get_secret_str("AZURE_API_VERSION")
) # type: ignore
api_key = (
optional_params.api_key
or litellm.api_key
or litellm.azure_key
or get_secret_str("AZURE_OPENAI_API_KEY")
or get_secret_str("AZURE_API_KEY")
) # type: ignore
extra_body = optional_params.get("extra_body", {})
if extra_body is not None:
extra_body.pop("azure_ad_token", None)
else:
get_secret_str("AZURE_AD_TOKEN") # type: ignore
response = azure_fine_tuning_apis_instance.retrieve_fine_tuning_job(
api_base=api_base,
api_key=api_key,
api_version=api_version,
fine_tuning_job_id=fine_tuning_job_id,
timeout=timeout,
max_retries=optional_params.max_retries,
_is_async=_is_async,
organization=optional_params.organization,
)
else:
raise litellm.exceptions.BadRequestError(
message="LiteLLM doesn't support {} for 'retrieve_fine_tuning_job'. Only 'openai' and 'azure' are supported.".format(
custom_llm_provider
),
model="n/a",
llm_provider=custom_llm_provider,
response=httpx.Response(
status_code=400,
content="Unsupported provider",
request=httpx.Request(method="retrieve_fine_tuning_job", url="https://github.com/BerriAI/litellm"), # type: ignore
),
)
return response
except Exception as e:
raise e