(fix) GCS bucket logger - apply truncate_standard_logging_payload_content to standard_logging_payload and ensure GCS flushes queue on fails (#7500)

* use truncate_standard_logging_payload_content

* update truncate_standard_logging_payload_content

* update dd logger

* update gcs async_send_batch

* fix code check

* test_datadog_payload_content_truncation

* fix code quality
This commit is contained in:
Ishaan Jaff 2025-01-01 20:21:01 -08:00 committed by GitHub
parent 4e4495ae3d
commit 3317619357
6 changed files with 49 additions and 39 deletions

View file

@ -256,10 +256,6 @@ class DataDogLogger(CustomBatchLogger):
"""
import json
from litellm.litellm_core_utils.litellm_logging import (
truncate_standard_logging_payload_content,
)
standard_logging_object: Optional[StandardLoggingPayload] = kwargs.get(
"standard_logging_object", None
)
@ -271,7 +267,6 @@ class DataDogLogger(CustomBatchLogger):
status = DataDogStatus.ERROR
# Build the initial payload
truncate_standard_logging_payload_content(standard_logging_object)
json_payload = json.dumps(standard_logging_object, default=str)
verbose_logger.debug("Datadog: Logger - Logging payload = %s", json_payload)

View file

@ -138,11 +138,11 @@ class GCSBucketLogger(GCSBucketBase):
logging_payload=logging_payload,
)
# Clear the queue after processing
self.log_queue.clear()
except Exception as e:
verbose_logger.exception(f"GCS Bucket batch logging error: {str(e)}")
finally:
# Clear the queue after processing
self.log_queue.clear()
def _get_object_name(
self, kwargs: Dict, logging_payload: StandardLoggingPayload, response_obj: Any

View file

@ -5,7 +5,7 @@ from typing import TYPE_CHECKING, Any, List, Optional, Union
import httpx
from litellm._logging import verbose_logger
from litellm.types.llms.openai import AllMessageValues, ChatCompletionToolParam
from litellm.types.llms.openai import AllMessageValues
if TYPE_CHECKING:
from opentelemetry.trace import Span as _Span

View file

@ -3026,6 +3026,8 @@ def get_standard_logging_object_payload(
),
)
truncate_standard_logging_payload_content(payload)
return payload
except Exception as e:
verbose_logger.exception(
@ -3040,20 +3042,26 @@ def truncate_standard_logging_payload_content(
"""
Truncate error strings and message content in logging payload
Some loggers like DataDog have a limit on the size of the payload. (1MB)
Most logging integrations - DataDog / GCS Bucket / have a limit on the size of the payload. ~around(1MB)
This function truncates the error string and the message content if they exceed a certain length.
"""
MAX_STR_LENGTH = 10_000
try:
MAX_STR_LENGTH = 10_000
# Truncate fields that might exceed max length
fields_to_truncate = ["error_str", "messages", "response"]
for field in fields_to_truncate:
_truncate_field(
standard_logging_object=standard_logging_object,
field_name=field,
max_length=MAX_STR_LENGTH,
# Truncate fields that might exceed max length
fields_to_truncate = ["error_str", "messages", "response"]
for field in fields_to_truncate:
_truncate_field(
standard_logging_object=standard_logging_object,
field_name=field,
max_length=MAX_STR_LENGTH,
)
except Exception as e:
verbose_logger.exception(
"Error truncating standard logging payload - {}".format(str(e))
)
return
def _truncate_text(text: str, max_length: int) -> str:

View file

@ -13,7 +13,7 @@ from litellm.llms.base_llm.chat.transformation import LiteLLMLoggingObj
from litellm.llms.openai.common_utils import drop_params_from_unprocessable_entity_error
from litellm.llms.openai.openai import OpenAIConfig
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues, ChatCompletionToolParam
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import ModelResponse, ProviderField
from litellm.utils import _add_path_to_api_base

View file

@ -1,7 +1,10 @@
import io
import os
from re import M
import sys
from litellm.integrations.custom_logger import CustomLogger
sys.path.insert(0, os.path.abspath("../.."))
@ -392,6 +395,14 @@ async def test_datadog_payload_environment_variables():
pytest.fail(f"Test failed with exception: {str(e)}")
class TestDDLogger(CustomLogger):
def __init__(self):
self.standard_logging_object: Optional[StandardLoggingPayload] = None
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
self.standard_logging_object = kwargs["standard_logging_object"]
@pytest.mark.asyncio
async def test_datadog_payload_content_truncation():
"""
@ -399,15 +410,13 @@ async def test_datadog_payload_content_truncation():
DataDog has a limit of 1MB for the logged payload size.
"""
dd_logger = DataDogLogger()
dd_logger = TestDDLogger()
litellm.callbacks = [dd_logger]
# Create a standard payload with very long content
standard_payload = create_standard_logging_payload()
long_content = "x" * 80_000 # Create string longer than MAX_STR_LENGTH (10_000)
# Modify payload with long content
standard_payload["error_str"] = long_content
standard_payload["messages"] = [
# messages with long content
messages = [
{
"role": "user",
"content": [
@ -421,28 +430,26 @@ async def test_datadog_payload_content_truncation():
],
}
]
standard_payload["response"] = {"choices": [{"message": {"content": long_content}}]}
# Create the payload
dd_payload = dd_logger.create_datadog_logging_payload(
kwargs={"standard_logging_object": standard_payload},
response_obj=None,
start_time=datetime.now(),
end_time=datetime.now(),
await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
temperature=0.2,
mock_response=long_content,
)
print("dd_payload", json.dumps(dd_payload, indent=2))
await asyncio.sleep(2)
# Parse the message back to dict to verify truncation
message_dict = json.loads(dd_payload["message"])
# Create the payload
standard_logging_payload = dd_logger.standard_logging_object
print("standard_logging_payload", json.dumps(standard_logging_payload, indent=2))
# Verify truncation of fields
assert len(message_dict["error_str"]) < 10_100, "error_str not truncated correctly"
assert (
len(str(message_dict["messages"])) < 10_100
len(str(standard_logging_payload["messages"])) < 10_100
), "messages not truncated correctly"
assert (
len(str(message_dict["response"])) < 10_100
len(str(standard_logging_payload["response"])) < 10_100
), "response not truncated correctly"