mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
* Add inference providers support for Hugging Face (#8258) * add first version of inference providers for huggingface * temporarily skipping tests * Add documentation * Fix titles * remove max_retries from params and clean up * add suggestions * use llm http handler * update doc * add suggestions * run formatters * add tests * revert * revert * rename file * set maxsize for lru cache * fix embeddings * fix inference url * fix tests following breaking change in main * use ChatCompletionRequest * fix tests and lint * [Hugging Face] Remove outdated chat completion tests and fix embedding tests (#9749) * remove or fix tests * fix link in doc * fix(config_settings.md): document hf api key --------- Co-authored-by: célina <hanouticelina@gmail.com>
This commit is contained in:
parent
0d503ad8ad
commit
34bdf36eab
24 changed files with 2052 additions and 2456 deletions
589
litellm/llms/huggingface/embedding/transformation.py
Normal file
589
litellm/llms/huggingface/embedding/transformation.py
Normal file
|
@ -0,0 +1,589 @@
|
|||
import json
|
||||
import os
|
||||
import time
|
||||
from copy import deepcopy
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm.litellm_core_utils.prompt_templates.common_utils import (
|
||||
convert_content_list_to_str,
|
||||
)
|
||||
from litellm.litellm_core_utils.prompt_templates.factory import (
|
||||
custom_prompt,
|
||||
prompt_factory,
|
||||
)
|
||||
from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
|
||||
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import AllMessageValues
|
||||
from litellm.types.utils import Choices, Message, ModelResponse, Usage
|
||||
from litellm.utils import token_counter
|
||||
|
||||
from ..common_utils import HuggingFaceError, hf_task_list, hf_tasks, output_parser
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||||
|
||||
LoggingClass = LiteLLMLoggingObj
|
||||
else:
|
||||
LoggingClass = Any
|
||||
|
||||
|
||||
tgi_models_cache = None
|
||||
conv_models_cache = None
|
||||
|
||||
|
||||
class HuggingFaceEmbeddingConfig(BaseConfig):
|
||||
"""
|
||||
Reference: https://huggingface.github.io/text-generation-inference/#/Text%20Generation%20Inference/compat_generate
|
||||
"""
|
||||
|
||||
hf_task: Optional[
|
||||
hf_tasks
|
||||
] = None # litellm-specific param, used to know the api spec to use when calling huggingface api
|
||||
best_of: Optional[int] = None
|
||||
decoder_input_details: Optional[bool] = None
|
||||
details: Optional[bool] = True # enables returning logprobs + best of
|
||||
max_new_tokens: Optional[int] = None
|
||||
repetition_penalty: Optional[float] = None
|
||||
return_full_text: Optional[
|
||||
bool
|
||||
] = False # by default don't return the input as part of the output
|
||||
seed: Optional[int] = None
|
||||
temperature: Optional[float] = None
|
||||
top_k: Optional[int] = None
|
||||
top_n_tokens: Optional[int] = None
|
||||
top_p: Optional[int] = None
|
||||
truncate: Optional[int] = None
|
||||
typical_p: Optional[float] = None
|
||||
watermark: Optional[bool] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
best_of: Optional[int] = None,
|
||||
decoder_input_details: Optional[bool] = None,
|
||||
details: Optional[bool] = None,
|
||||
max_new_tokens: Optional[int] = None,
|
||||
repetition_penalty: Optional[float] = None,
|
||||
return_full_text: Optional[bool] = None,
|
||||
seed: Optional[int] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_k: Optional[int] = None,
|
||||
top_n_tokens: Optional[int] = None,
|
||||
top_p: Optional[int] = None,
|
||||
truncate: Optional[int] = None,
|
||||
typical_p: Optional[float] = None,
|
||||
watermark: Optional[bool] = None,
|
||||
) -> None:
|
||||
locals_ = locals().copy()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return super().get_config()
|
||||
|
||||
def get_special_options_params(self):
|
||||
return ["use_cache", "wait_for_model"]
|
||||
|
||||
def get_supported_openai_params(self, model: str):
|
||||
return [
|
||||
"stream",
|
||||
"temperature",
|
||||
"max_tokens",
|
||||
"max_completion_tokens",
|
||||
"top_p",
|
||||
"stop",
|
||||
"n",
|
||||
"echo",
|
||||
]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: Dict,
|
||||
optional_params: Dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> Dict:
|
||||
for param, value in non_default_params.items():
|
||||
# temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None
|
||||
if param == "temperature":
|
||||
if value == 0.0 or value == 0:
|
||||
# hugging face exception raised when temp==0
|
||||
# Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
|
||||
value = 0.01
|
||||
optional_params["temperature"] = value
|
||||
if param == "top_p":
|
||||
optional_params["top_p"] = value
|
||||
if param == "n":
|
||||
optional_params["best_of"] = value
|
||||
optional_params[
|
||||
"do_sample"
|
||||
] = True # Need to sample if you want best of for hf inference endpoints
|
||||
if param == "stream":
|
||||
optional_params["stream"] = value
|
||||
if param == "stop":
|
||||
optional_params["stop"] = value
|
||||
if param == "max_tokens" or param == "max_completion_tokens":
|
||||
# HF TGI raises the following exception when max_new_tokens==0
|
||||
# Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
|
||||
if value == 0:
|
||||
value = 1
|
||||
optional_params["max_new_tokens"] = value
|
||||
if param == "echo":
|
||||
# https://huggingface.co/docs/huggingface_hub/main/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation.decoder_input_details
|
||||
# Return the decoder input token logprobs and ids. You must set details=True as well for it to be taken into account. Defaults to False
|
||||
optional_params["decoder_input_details"] = True
|
||||
|
||||
return optional_params
|
||||
|
||||
def get_hf_api_key(self) -> Optional[str]:
|
||||
return get_secret_str("HUGGINGFACE_API_KEY")
|
||||
|
||||
def read_tgi_conv_models(self):
|
||||
try:
|
||||
global tgi_models_cache, conv_models_cache
|
||||
# Check if the cache is already populated
|
||||
# so we don't keep on reading txt file if there are 1k requests
|
||||
if (tgi_models_cache is not None) and (conv_models_cache is not None):
|
||||
return tgi_models_cache, conv_models_cache
|
||||
# If not, read the file and populate the cache
|
||||
tgi_models = set()
|
||||
script_directory = os.path.dirname(os.path.abspath(__file__))
|
||||
script_directory = os.path.dirname(script_directory)
|
||||
# Construct the file path relative to the script's directory
|
||||
file_path = os.path.join(
|
||||
script_directory,
|
||||
"huggingface_llms_metadata",
|
||||
"hf_text_generation_models.txt",
|
||||
)
|
||||
|
||||
with open(file_path, "r") as file:
|
||||
for line in file:
|
||||
tgi_models.add(line.strip())
|
||||
|
||||
# Cache the set for future use
|
||||
tgi_models_cache = tgi_models
|
||||
|
||||
# If not, read the file and populate the cache
|
||||
file_path = os.path.join(
|
||||
script_directory,
|
||||
"huggingface_llms_metadata",
|
||||
"hf_conversational_models.txt",
|
||||
)
|
||||
conv_models = set()
|
||||
with open(file_path, "r") as file:
|
||||
for line in file:
|
||||
conv_models.add(line.strip())
|
||||
# Cache the set for future use
|
||||
conv_models_cache = conv_models
|
||||
return tgi_models, conv_models
|
||||
except Exception:
|
||||
return set(), set()
|
||||
|
||||
def get_hf_task_for_model(self, model: str) -> Tuple[hf_tasks, str]:
|
||||
# read text file, cast it to set
|
||||
# read the file called "huggingface_llms_metadata/hf_text_generation_models.txt"
|
||||
if model.split("/")[0] in hf_task_list:
|
||||
split_model = model.split("/", 1)
|
||||
return split_model[0], split_model[1] # type: ignore
|
||||
tgi_models, conversational_models = self.read_tgi_conv_models()
|
||||
|
||||
if model in tgi_models:
|
||||
return "text-generation-inference", model
|
||||
elif model in conversational_models:
|
||||
return "conversational", model
|
||||
elif "roneneldan/TinyStories" in model:
|
||||
return "text-generation", model
|
||||
else:
|
||||
return "text-generation-inference", model # default to tgi
|
||||
|
||||
def transform_request(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
headers: dict,
|
||||
) -> dict:
|
||||
task = litellm_params.get("task", None)
|
||||
## VALIDATE API FORMAT
|
||||
if task is None or not isinstance(task, str) or task not in hf_task_list:
|
||||
raise Exception(
|
||||
"Invalid hf task - {}. Valid formats - {}.".format(task, hf_tasks)
|
||||
)
|
||||
|
||||
## Load Config
|
||||
config = litellm.HuggingFaceEmbeddingConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > huggingfaceConfig(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
### MAP INPUT PARAMS
|
||||
#### HANDLE SPECIAL PARAMS
|
||||
special_params = self.get_special_options_params()
|
||||
special_params_dict = {}
|
||||
# Create a list of keys to pop after iteration
|
||||
keys_to_pop = []
|
||||
|
||||
for k, v in optional_params.items():
|
||||
if k in special_params:
|
||||
special_params_dict[k] = v
|
||||
keys_to_pop.append(k)
|
||||
|
||||
# Pop the keys from the dictionary after iteration
|
||||
for k in keys_to_pop:
|
||||
optional_params.pop(k)
|
||||
if task == "conversational":
|
||||
inference_params = deepcopy(optional_params)
|
||||
inference_params.pop("details")
|
||||
inference_params.pop("return_full_text")
|
||||
past_user_inputs = []
|
||||
generated_responses = []
|
||||
text = ""
|
||||
for message in messages:
|
||||
if message["role"] == "user":
|
||||
if text != "":
|
||||
past_user_inputs.append(text)
|
||||
text = convert_content_list_to_str(message)
|
||||
elif message["role"] == "assistant" or message["role"] == "system":
|
||||
generated_responses.append(convert_content_list_to_str(message))
|
||||
data = {
|
||||
"inputs": {
|
||||
"text": text,
|
||||
"past_user_inputs": past_user_inputs,
|
||||
"generated_responses": generated_responses,
|
||||
},
|
||||
"parameters": inference_params,
|
||||
}
|
||||
|
||||
elif task == "text-generation-inference":
|
||||
# always send "details" and "return_full_text" as params
|
||||
if model in litellm.custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = litellm.custom_prompt_dict[model]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details.get("roles", None),
|
||||
initial_prompt_value=model_prompt_details.get(
|
||||
"initial_prompt_value", ""
|
||||
),
|
||||
final_prompt_value=model_prompt_details.get(
|
||||
"final_prompt_value", ""
|
||||
),
|
||||
messages=messages,
|
||||
)
|
||||
else:
|
||||
prompt = prompt_factory(model=model, messages=messages)
|
||||
data = {
|
||||
"inputs": prompt, # type: ignore
|
||||
"parameters": optional_params,
|
||||
"stream": ( # type: ignore
|
||||
True
|
||||
if "stream" in optional_params
|
||||
and isinstance(optional_params["stream"], bool)
|
||||
and optional_params["stream"] is True # type: ignore
|
||||
else False
|
||||
),
|
||||
}
|
||||
else:
|
||||
# Non TGI and Conversational llms
|
||||
# We need this branch, it removes 'details' and 'return_full_text' from params
|
||||
if model in litellm.custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = litellm.custom_prompt_dict[model]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details.get("roles", {}),
|
||||
initial_prompt_value=model_prompt_details.get(
|
||||
"initial_prompt_value", ""
|
||||
),
|
||||
final_prompt_value=model_prompt_details.get(
|
||||
"final_prompt_value", ""
|
||||
),
|
||||
bos_token=model_prompt_details.get("bos_token", ""),
|
||||
eos_token=model_prompt_details.get("eos_token", ""),
|
||||
messages=messages,
|
||||
)
|
||||
else:
|
||||
prompt = prompt_factory(model=model, messages=messages)
|
||||
inference_params = deepcopy(optional_params)
|
||||
inference_params.pop("details")
|
||||
inference_params.pop("return_full_text")
|
||||
data = {
|
||||
"inputs": prompt, # type: ignore
|
||||
}
|
||||
if task == "text-generation-inference":
|
||||
data["parameters"] = inference_params
|
||||
data["stream"] = ( # type: ignore
|
||||
True # type: ignore
|
||||
if "stream" in optional_params and optional_params["stream"] is True
|
||||
else False
|
||||
)
|
||||
|
||||
### RE-ADD SPECIAL PARAMS
|
||||
if len(special_params_dict.keys()) > 0:
|
||||
data.update({"options": special_params_dict})
|
||||
|
||||
return data
|
||||
|
||||
def get_api_base(self, api_base: Optional[str], model: str) -> str:
|
||||
"""
|
||||
Get the API base for the Huggingface API.
|
||||
|
||||
Do not add the chat/embedding/rerank extension here. Let the handler do this.
|
||||
"""
|
||||
if "https" in model:
|
||||
completion_url = model
|
||||
elif api_base is not None:
|
||||
completion_url = api_base
|
||||
elif "HF_API_BASE" in os.environ:
|
||||
completion_url = os.getenv("HF_API_BASE", "")
|
||||
elif "HUGGINGFACE_API_BASE" in os.environ:
|
||||
completion_url = os.getenv("HUGGINGFACE_API_BASE", "")
|
||||
else:
|
||||
completion_url = f"https://api-inference.huggingface.co/models/{model}"
|
||||
|
||||
return completion_url
|
||||
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: Dict,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: Dict,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
) -> Dict:
|
||||
default_headers = {
|
||||
"content-type": "application/json",
|
||||
}
|
||||
if api_key is not None:
|
||||
default_headers[
|
||||
"Authorization"
|
||||
] = f"Bearer {api_key}" # Huggingface Inference Endpoint default is to accept bearer tokens
|
||||
|
||||
headers = {**headers, **default_headers}
|
||||
return headers
|
||||
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
||||
) -> BaseLLMException:
|
||||
return HuggingFaceError(
|
||||
status_code=status_code, message=error_message, headers=headers
|
||||
)
|
||||
|
||||
def _convert_streamed_response_to_complete_response(
|
||||
self,
|
||||
response: httpx.Response,
|
||||
logging_obj: LoggingClass,
|
||||
model: str,
|
||||
data: dict,
|
||||
api_key: Optional[str] = None,
|
||||
) -> List[Dict[str, Any]]:
|
||||
streamed_response = CustomStreamWrapper(
|
||||
completion_stream=response.iter_lines(),
|
||||
model=model,
|
||||
custom_llm_provider="huggingface",
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
content = ""
|
||||
for chunk in streamed_response:
|
||||
content += chunk["choices"][0]["delta"]["content"]
|
||||
completion_response: List[Dict[str, Any]] = [{"generated_text": content}]
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=data,
|
||||
api_key=api_key,
|
||||
original_response=completion_response,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
return completion_response
|
||||
|
||||
def convert_to_model_response_object( # noqa: PLR0915
|
||||
self,
|
||||
completion_response: Union[List[Dict[str, Any]], Dict[str, Any]],
|
||||
model_response: ModelResponse,
|
||||
task: Optional[hf_tasks],
|
||||
optional_params: dict,
|
||||
encoding: Any,
|
||||
messages: List[AllMessageValues],
|
||||
model: str,
|
||||
):
|
||||
if task is None:
|
||||
task = "text-generation-inference" # default to tgi
|
||||
|
||||
if task == "conversational":
|
||||
if len(completion_response["generated_text"]) > 0: # type: ignore
|
||||
model_response.choices[0].message.content = completion_response[ # type: ignore
|
||||
"generated_text"
|
||||
]
|
||||
elif task == "text-generation-inference":
|
||||
if (
|
||||
not isinstance(completion_response, list)
|
||||
or not isinstance(completion_response[0], dict)
|
||||
or "generated_text" not in completion_response[0]
|
||||
):
|
||||
raise HuggingFaceError(
|
||||
status_code=422,
|
||||
message=f"response is not in expected format - {completion_response}",
|
||||
headers=None,
|
||||
)
|
||||
|
||||
if len(completion_response[0]["generated_text"]) > 0:
|
||||
model_response.choices[0].message.content = output_parser( # type: ignore
|
||||
completion_response[0]["generated_text"]
|
||||
)
|
||||
## GETTING LOGPROBS + FINISH REASON
|
||||
if (
|
||||
"details" in completion_response[0]
|
||||
and "tokens" in completion_response[0]["details"]
|
||||
):
|
||||
model_response.choices[0].finish_reason = completion_response[0][
|
||||
"details"
|
||||
]["finish_reason"]
|
||||
sum_logprob = 0
|
||||
for token in completion_response[0]["details"]["tokens"]:
|
||||
if token["logprob"] is not None:
|
||||
sum_logprob += token["logprob"]
|
||||
setattr(model_response.choices[0].message, "_logprob", sum_logprob) # type: ignore
|
||||
if "best_of" in optional_params and optional_params["best_of"] > 1:
|
||||
if (
|
||||
"details" in completion_response[0]
|
||||
and "best_of_sequences" in completion_response[0]["details"]
|
||||
):
|
||||
choices_list = []
|
||||
for idx, item in enumerate(
|
||||
completion_response[0]["details"]["best_of_sequences"]
|
||||
):
|
||||
sum_logprob = 0
|
||||
for token in item["tokens"]:
|
||||
if token["logprob"] is not None:
|
||||
sum_logprob += token["logprob"]
|
||||
if len(item["generated_text"]) > 0:
|
||||
message_obj = Message(
|
||||
content=output_parser(item["generated_text"]),
|
||||
logprobs=sum_logprob,
|
||||
)
|
||||
else:
|
||||
message_obj = Message(content=None)
|
||||
choice_obj = Choices(
|
||||
finish_reason=item["finish_reason"],
|
||||
index=idx + 1,
|
||||
message=message_obj,
|
||||
)
|
||||
choices_list.append(choice_obj)
|
||||
model_response.choices.extend(choices_list)
|
||||
elif task == "text-classification":
|
||||
model_response.choices[0].message.content = json.dumps( # type: ignore
|
||||
completion_response
|
||||
)
|
||||
else:
|
||||
if (
|
||||
isinstance(completion_response, list)
|
||||
and len(completion_response[0]["generated_text"]) > 0
|
||||
):
|
||||
model_response.choices[0].message.content = output_parser( # type: ignore
|
||||
completion_response[0]["generated_text"]
|
||||
)
|
||||
## CALCULATING USAGE
|
||||
prompt_tokens = 0
|
||||
try:
|
||||
prompt_tokens = token_counter(model=model, messages=messages)
|
||||
except Exception:
|
||||
# this should remain non blocking we should not block a response returning if calculating usage fails
|
||||
pass
|
||||
output_text = model_response["choices"][0]["message"].get("content", "")
|
||||
if output_text is not None and len(output_text) > 0:
|
||||
completion_tokens = 0
|
||||
try:
|
||||
completion_tokens = len(
|
||||
encoding.encode(
|
||||
model_response["choices"][0]["message"].get("content", "")
|
||||
)
|
||||
) ##[TODO] use the llama2 tokenizer here
|
||||
except Exception:
|
||||
# this should remain non blocking we should not block a response returning if calculating usage fails
|
||||
pass
|
||||
else:
|
||||
completion_tokens = 0
|
||||
|
||||
model_response.created = int(time.time())
|
||||
model_response.model = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
setattr(model_response, "usage", usage)
|
||||
model_response._hidden_params["original_response"] = completion_response
|
||||
return model_response
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: httpx.Response,
|
||||
model_response: ModelResponse,
|
||||
logging_obj: LoggingClass,
|
||||
request_data: Dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: Dict,
|
||||
litellm_params: Dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> ModelResponse:
|
||||
## Some servers might return streaming responses even though stream was not set to true. (e.g. Baseten)
|
||||
task = litellm_params.get("task", None)
|
||||
is_streamed = False
|
||||
if (
|
||||
raw_response.__dict__["headers"].get("Content-Type", "")
|
||||
== "text/event-stream"
|
||||
):
|
||||
is_streamed = True
|
||||
|
||||
# iterate over the complete streamed response, and return the final answer
|
||||
if is_streamed:
|
||||
completion_response = self._convert_streamed_response_to_complete_response(
|
||||
response=raw_response,
|
||||
logging_obj=logging_obj,
|
||||
model=model,
|
||||
data=request_data,
|
||||
api_key=api_key,
|
||||
)
|
||||
else:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=request_data,
|
||||
api_key=api_key,
|
||||
original_response=raw_response.text,
|
||||
additional_args={"complete_input_dict": request_data},
|
||||
)
|
||||
## RESPONSE OBJECT
|
||||
try:
|
||||
completion_response = raw_response.json()
|
||||
if isinstance(completion_response, dict):
|
||||
completion_response = [completion_response]
|
||||
except Exception:
|
||||
raise HuggingFaceError(
|
||||
message=f"Original Response received: {raw_response.text}",
|
||||
status_code=raw_response.status_code,
|
||||
)
|
||||
|
||||
if isinstance(completion_response, dict) and "error" in completion_response:
|
||||
raise HuggingFaceError(
|
||||
message=completion_response["error"], # type: ignore
|
||||
status_code=raw_response.status_code,
|
||||
)
|
||||
return self.convert_to_model_response_object(
|
||||
completion_response=completion_response,
|
||||
model_response=model_response,
|
||||
task=task if task is not None and task in hf_task_list else None,
|
||||
optional_params=optional_params,
|
||||
encoding=encoding,
|
||||
messages=messages,
|
||||
model=model,
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue