mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
Litellm merge pr (#7161)
* build: merge branch * test: fix openai naming * fix(main.py): fix openai renaming * style: ignore function length for config factory * fix(sagemaker/): fix routing logic * fix: fix imports * fix: fix override
This commit is contained in:
parent
d5aae81c6d
commit
350cfc36f7
88 changed files with 3617 additions and 4421 deletions
140
litellm/llms/nlp_cloud/chat/handler.py
Normal file
140
litellm/llms/nlp_cloud/chat/handler.py
Normal file
|
@ -0,0 +1,140 @@
|
|||
import json
|
||||
import os
|
||||
import time
|
||||
import types
|
||||
from enum import Enum
|
||||
from typing import Any, Callable, List, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm.llms.base_llm.transformation import BaseConfig, BaseLLMException
|
||||
from litellm.llms.custom_httpx.http_handler import (
|
||||
AsyncHTTPHandler,
|
||||
HTTPHandler,
|
||||
_get_httpx_client,
|
||||
get_async_httpx_client,
|
||||
)
|
||||
from litellm.types.llms.openai import AllMessageValues
|
||||
from litellm.utils import ModelResponse, Usage
|
||||
|
||||
from ..common_utils import NLPCloudError
|
||||
from .transformation import NLPCloudConfig
|
||||
|
||||
nlp_config = NLPCloudConfig()
|
||||
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key,
|
||||
logging_obj,
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
logger_fn=None,
|
||||
default_max_tokens_to_sample=None,
|
||||
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
||||
headers={},
|
||||
):
|
||||
headers = nlp_config.validate_environment(
|
||||
api_key=api_key,
|
||||
headers=headers,
|
||||
model=model,
|
||||
messages=messages,
|
||||
optional_params=optional_params,
|
||||
)
|
||||
|
||||
## Load Config
|
||||
config = litellm.NLPCloudConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > togetherai_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
completion_url_fragment_1 = api_base
|
||||
completion_url_fragment_2 = "/generation"
|
||||
model = model
|
||||
|
||||
completion_url = completion_url_fragment_1 + model + completion_url_fragment_2
|
||||
data = nlp_config.transform_request(
|
||||
model=model,
|
||||
messages=messages,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=None,
|
||||
api_key=api_key,
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"headers": headers,
|
||||
"api_base": completion_url,
|
||||
},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
if client is None or not isinstance(client, HTTPHandler):
|
||||
client = _get_httpx_client()
|
||||
|
||||
response = client.post(
|
||||
completion_url,
|
||||
headers=headers,
|
||||
data=json.dumps(data),
|
||||
stream=optional_params["stream"] if "stream" in optional_params else False,
|
||||
)
|
||||
if "stream" in optional_params and optional_params["stream"] is True:
|
||||
return clean_and_iterate_chunks(response)
|
||||
else:
|
||||
return nlp_config.transform_response(
|
||||
model=model,
|
||||
raw_response=response,
|
||||
model_response=model_response,
|
||||
logging_obj=logging_obj,
|
||||
api_key=api_key,
|
||||
request_data=data,
|
||||
messages=messages,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
encoding=encoding,
|
||||
)
|
||||
|
||||
|
||||
# def clean_and_iterate_chunks(response):
|
||||
# def process_chunk(chunk):
|
||||
# print(f"received chunk: {chunk}")
|
||||
# cleaned_chunk = chunk.decode("utf-8")
|
||||
# # Perform further processing based on your needs
|
||||
# return cleaned_chunk
|
||||
|
||||
|
||||
# for line in response.iter_lines():
|
||||
# if line:
|
||||
# yield process_chunk(line)
|
||||
def clean_and_iterate_chunks(response):
|
||||
buffer = b""
|
||||
|
||||
for chunk in response.iter_content(chunk_size=1024):
|
||||
if not chunk:
|
||||
break
|
||||
|
||||
buffer += chunk
|
||||
while b"\x00" in buffer:
|
||||
buffer = buffer.replace(b"\x00", b"")
|
||||
yield buffer.decode("utf-8")
|
||||
buffer = b""
|
||||
|
||||
# No more data expected, yield any remaining data in the buffer
|
||||
if buffer:
|
||||
yield buffer.decode("utf-8")
|
||||
|
||||
|
||||
def embedding():
|
||||
# logic for parsing in - calling - parsing out model embedding calls
|
||||
pass
|
Loading…
Add table
Add a link
Reference in a new issue