mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
Litellm merge pr (#7161)
* build: merge branch * test: fix openai naming * fix(main.py): fix openai renaming * style: ignore function length for config factory * fix(sagemaker/): fix routing logic * fix: fix imports * fix: fix override
This commit is contained in:
parent
d5aae81c6d
commit
350cfc36f7
88 changed files with 3617 additions and 4421 deletions
|
@ -4,7 +4,17 @@ import os
|
|||
import time
|
||||
import traceback
|
||||
import types
|
||||
from typing import Any, Callable, Coroutine, Iterable, Literal, Optional, Union, cast
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Coroutine,
|
||||
Iterable,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Union,
|
||||
cast,
|
||||
)
|
||||
|
||||
import httpx
|
||||
import openai
|
||||
|
@ -18,6 +28,7 @@ import litellm
|
|||
from litellm import LlmProviders
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||||
from litellm.llms.base_llm.transformation import BaseConfig, BaseLLMException
|
||||
from litellm.llms.custom_httpx.http_handler import _DEFAULT_TTL_FOR_HTTPX_CLIENTS
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.utils import ProviderField
|
||||
|
@ -35,6 +46,7 @@ from litellm.utils import (
|
|||
from ...types.llms.openai import *
|
||||
from ..base import BaseLLM
|
||||
from ..prompt_templates.factory import custom_prompt, prompt_factory
|
||||
from .chat.gpt_transformation import OpenAIGPTConfig
|
||||
from .common_utils import OpenAIError, drop_params_from_unprocessable_entity_error
|
||||
|
||||
|
||||
|
@ -81,135 +93,7 @@ class MistralEmbeddingConfig:
|
|||
return optional_params
|
||||
|
||||
|
||||
class DeepInfraConfig:
|
||||
"""
|
||||
Reference: https://deepinfra.com/docs/advanced/openai_api
|
||||
|
||||
The class `DeepInfra` provides configuration for the DeepInfra's Chat Completions API interface. Below are the parameters:
|
||||
"""
|
||||
|
||||
frequency_penalty: Optional[int] = None
|
||||
function_call: Optional[Union[str, dict]] = None
|
||||
functions: Optional[list] = None
|
||||
logit_bias: Optional[dict] = None
|
||||
max_tokens: Optional[int] = None
|
||||
n: Optional[int] = None
|
||||
presence_penalty: Optional[int] = None
|
||||
stop: Optional[Union[str, list]] = None
|
||||
temperature: Optional[int] = None
|
||||
top_p: Optional[int] = None
|
||||
response_format: Optional[dict] = None
|
||||
tools: Optional[list] = None
|
||||
tool_choice: Optional[Union[str, dict]] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
frequency_penalty: Optional[int] = None,
|
||||
function_call: Optional[Union[str, dict]] = None,
|
||||
functions: Optional[list] = None,
|
||||
logit_bias: Optional[dict] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
presence_penalty: Optional[int] = None,
|
||||
stop: Optional[Union[str, list]] = None,
|
||||
temperature: Optional[int] = None,
|
||||
top_p: Optional[int] = None,
|
||||
response_format: Optional[dict] = None,
|
||||
tools: Optional[list] = None,
|
||||
tool_choice: Optional[Union[str, dict]] = None,
|
||||
) -> None:
|
||||
locals_ = locals().copy()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params(self):
|
||||
return [
|
||||
"stream",
|
||||
"frequency_penalty",
|
||||
"function_call",
|
||||
"functions",
|
||||
"logit_bias",
|
||||
"max_tokens",
|
||||
"max_completion_tokens",
|
||||
"n",
|
||||
"presence_penalty",
|
||||
"stop",
|
||||
"temperature",
|
||||
"top_p",
|
||||
"response_format",
|
||||
"tools",
|
||||
"tool_choice",
|
||||
]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
supported_openai_params = self.get_supported_openai_params()
|
||||
for param, value in non_default_params.items():
|
||||
if (
|
||||
param == "temperature"
|
||||
and value == 0
|
||||
and model == "mistralai/Mistral-7B-Instruct-v0.1"
|
||||
): # this model does no support temperature == 0
|
||||
value = 0.0001 # close to 0
|
||||
if param == "tool_choice":
|
||||
if (
|
||||
value != "auto" and value != "none"
|
||||
): # https://deepinfra.com/docs/advanced/function_calling
|
||||
## UNSUPPORTED TOOL CHOICE VALUE
|
||||
if litellm.drop_params is True or drop_params is True:
|
||||
value = None
|
||||
else:
|
||||
raise litellm.utils.UnsupportedParamsError(
|
||||
message="Deepinfra doesn't support tool_choice={}. To drop unsupported openai params from the call, set `litellm.drop_params = True`".format(
|
||||
value
|
||||
),
|
||||
status_code=400,
|
||||
)
|
||||
elif param == "max_completion_tokens":
|
||||
optional_params["max_tokens"] = value
|
||||
elif param in supported_openai_params:
|
||||
if value is not None:
|
||||
optional_params[param] = value
|
||||
return optional_params
|
||||
|
||||
def _get_openai_compatible_provider_info(
|
||||
self, api_base: Optional[str], api_key: Optional[str]
|
||||
) -> Tuple[Optional[str], Optional[str]]:
|
||||
# deepinfra is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.endpoints.anyscale.com/v1
|
||||
api_base = (
|
||||
api_base
|
||||
or get_secret_str("DEEPINFRA_API_BASE")
|
||||
or "https://api.deepinfra.com/v1/openai"
|
||||
)
|
||||
dynamic_api_key = api_key or get_secret_str("DEEPINFRA_API_KEY")
|
||||
return api_base, dynamic_api_key
|
||||
|
||||
|
||||
class OpenAIConfig:
|
||||
class OpenAIConfig(BaseConfig):
|
||||
"""
|
||||
Reference: https://platform.openai.com/docs/api-reference/chat/create
|
||||
|
||||
|
@ -273,25 +157,12 @@ class OpenAIConfig:
|
|||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
return super().get_config()
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> list:
|
||||
"""
|
||||
This function returns the list of supported openai parameters for a given OpenAI Model
|
||||
This function returns the list
|
||||
of supported openai parameters for a given OpenAI Model
|
||||
|
||||
- If O1 model, returns O1 supported params
|
||||
- If gpt-audio model, returns gpt-audio supported params
|
||||
|
@ -319,6 +190,11 @@ class OpenAIConfig:
|
|||
optional_params[param] = value
|
||||
return optional_params
|
||||
|
||||
def _transform_messages(
|
||||
self, messages: List[AllMessageValues]
|
||||
) -> List[AllMessageValues]:
|
||||
return messages
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
|
@ -349,6 +225,55 @@ class OpenAIConfig:
|
|||
drop_params=drop_params,
|
||||
)
|
||||
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
||||
) -> BaseLLMException:
|
||||
return OpenAIError(
|
||||
status_code=status_code,
|
||||
message=error_message,
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
def transform_request(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
headers: dict,
|
||||
) -> dict:
|
||||
return {"model": model, "messages": messages, **optional_params}
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: httpx.Response,
|
||||
model_response: ModelResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> ModelResponse:
|
||||
raise NotImplementedError(
|
||||
"OpenAI handler does this transformation as it uses the OpenAI SDK."
|
||||
)
|
||||
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: dict,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
api_key: Optional[str] = None,
|
||||
) -> dict:
|
||||
raise NotImplementedError(
|
||||
"OpenAI handler does this validation as it uses the OpenAI SDK."
|
||||
)
|
||||
|
||||
|
||||
class OpenAIChatCompletion(BaseLLM):
|
||||
|
||||
|
@ -483,6 +408,7 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
model_response: ModelResponse,
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
logging_obj: Any,
|
||||
model: Optional[str] = None,
|
||||
messages: Optional[list] = None,
|
||||
|
@ -490,7 +416,6 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
acompletion: bool = False,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
headers: Optional[dict] = None,
|
||||
custom_prompt_dict: dict = {},
|
||||
|
@ -516,31 +441,26 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
|
||||
if custom_llm_provider is not None and custom_llm_provider != "openai":
|
||||
model_response.model = f"{custom_llm_provider}/{model}"
|
||||
# process all OpenAI compatible provider logic here
|
||||
if custom_llm_provider == "mistral":
|
||||
# check if message content passed in as list, and not string
|
||||
messages = prompt_factory( # type: ignore
|
||||
model=model,
|
||||
messages=messages,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
)
|
||||
if custom_llm_provider == "perplexity" and messages is not None:
|
||||
# check if messages.name is passed + supported, if not supported remove
|
||||
messages = prompt_factory( # type: ignore
|
||||
model=model,
|
||||
messages=messages,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
)
|
||||
|
||||
if messages is not None and custom_llm_provider is not None:
|
||||
provider_config = ProviderConfigManager.get_provider_chat_config(
|
||||
model=model, provider=LlmProviders(custom_llm_provider)
|
||||
)
|
||||
messages = provider_config._transform_messages(messages)
|
||||
if isinstance(provider_config, OpenAIGPTConfig) or isinstance(
|
||||
provider_config, OpenAIConfig
|
||||
):
|
||||
messages = provider_config._transform_messages(messages)
|
||||
|
||||
for _ in range(
|
||||
2
|
||||
): # if call fails due to alternating messages, retry with reformatted message
|
||||
data = {"model": model, "messages": messages, **optional_params}
|
||||
data = OpenAIConfig().transform_request(
|
||||
model=model,
|
||||
messages=messages,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
headers=headers or {},
|
||||
)
|
||||
|
||||
try:
|
||||
max_retries = data.pop("max_retries", 2)
|
||||
|
@ -2430,7 +2350,7 @@ class OpenAIAssistantsAPI(BaseLLM):
|
|||
"""
|
||||
Here's an example:
|
||||
```
|
||||
from litellm.llms.OpenAI.openai import OpenAIAssistantsAPI, MessageData
|
||||
from litellm.llms.openai.openai import OpenAIAssistantsAPI, MessageData
|
||||
|
||||
# create thread
|
||||
message: MessageData = {"role": "user", "content": "Hey, how's it going?"}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue