mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
refactor: move all testing to top-level of repo
Closes https://github.com/BerriAI/litellm/issues/486
This commit is contained in:
parent
5403c5828c
commit
3560f0ef2c
213 changed files with 74 additions and 217 deletions
447
tests/local_testing/test_function_calling.py
Normal file
447
tests/local_testing/test_function_calling.py
Normal file
|
@ -0,0 +1,447 @@
|
|||
import os
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
import io
|
||||
import os
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import pytest
|
||||
|
||||
import litellm
|
||||
from litellm import RateLimitError, Timeout, completion, completion_cost, embedding
|
||||
|
||||
litellm.num_retries = 0
|
||||
litellm.cache = None
|
||||
# litellm.set_verbose=True
|
||||
import json
|
||||
|
||||
# litellm.success_callback = ["langfuse"]
|
||||
|
||||
|
||||
def get_current_weather(location, unit="fahrenheit"):
|
||||
"""Get the current weather in a given location"""
|
||||
if "tokyo" in location.lower():
|
||||
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
|
||||
elif "san francisco" in location.lower():
|
||||
return json.dumps(
|
||||
{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}
|
||||
)
|
||||
elif "paris" in location.lower():
|
||||
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
|
||||
else:
|
||||
return json.dumps({"location": location, "temperature": "unknown"})
|
||||
|
||||
|
||||
# Example dummy function hard coded to return the same weather
|
||||
|
||||
|
||||
# In production, this could be your backend API or an external API
|
||||
@pytest.mark.parametrize(
|
||||
"model",
|
||||
[
|
||||
"gpt-3.5-turbo-1106",
|
||||
# "mistral/mistral-large-latest",
|
||||
# "claude-3-haiku-20240307",
|
||||
# "gemini/gemini-1.5-pro",
|
||||
"anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
"groq/llama3-8b-8192",
|
||||
],
|
||||
)
|
||||
@pytest.mark.flaky(retries=3, delay=1)
|
||||
def test_aaparallel_function_call(model):
|
||||
try:
|
||||
litellm.set_verbose = True
|
||||
# Step 1: send the conversation and available functions to the model
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
|
||||
}
|
||||
]
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state",
|
||||
},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"enum": ["celsius", "fahrenheit"],
|
||||
},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
response = litellm.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
tools=tools,
|
||||
tool_choice="auto", # auto is default, but we'll be explicit
|
||||
)
|
||||
print("Response\n", response)
|
||||
response_message = response.choices[0].message
|
||||
tool_calls = response_message.tool_calls
|
||||
|
||||
print("length of tool calls", len(tool_calls))
|
||||
print("Expecting there to be 3 tool calls")
|
||||
assert (
|
||||
len(tool_calls) > 0
|
||||
) # this has to call the function for SF, Tokyo and paris
|
||||
|
||||
# Step 2: check if the model wanted to call a function
|
||||
print(f"tool_calls: {tool_calls}")
|
||||
if tool_calls:
|
||||
# Step 3: call the function
|
||||
# Note: the JSON response may not always be valid; be sure to handle errors
|
||||
available_functions = {
|
||||
"get_current_weather": get_current_weather,
|
||||
} # only one function in this example, but you can have multiple
|
||||
messages.append(
|
||||
response_message
|
||||
) # extend conversation with assistant's reply
|
||||
print("Response message\n", response_message)
|
||||
# Step 4: send the info for each function call and function response to the model
|
||||
for tool_call in tool_calls:
|
||||
function_name = tool_call.function.name
|
||||
if function_name not in available_functions:
|
||||
# the model called a function that does not exist in available_functions - don't try calling anything
|
||||
return
|
||||
function_to_call = available_functions[function_name]
|
||||
function_args = json.loads(tool_call.function.arguments)
|
||||
function_response = function_to_call(
|
||||
location=function_args.get("location"),
|
||||
unit=function_args.get("unit"),
|
||||
)
|
||||
messages.append(
|
||||
{
|
||||
"tool_call_id": tool_call.id,
|
||||
"role": "tool",
|
||||
"name": function_name,
|
||||
"content": function_response,
|
||||
}
|
||||
) # extend conversation with function response
|
||||
print(f"messages: {messages}")
|
||||
second_response = litellm.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
temperature=0.2,
|
||||
seed=22,
|
||||
tools=tools,
|
||||
drop_params=True,
|
||||
) # get a new response from the model where it can see the function response
|
||||
print("second response\n", second_response)
|
||||
except litellm.InternalServerError as e:
|
||||
print(e)
|
||||
except litellm.RateLimitError as e:
|
||||
print(e)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
# test_parallel_function_call()
|
||||
|
||||
from litellm.types.utils import ChatCompletionMessageToolCall, Function, Message
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model, provider",
|
||||
[
|
||||
(
|
||||
"anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
"bedrock",
|
||||
),
|
||||
("claude-3-haiku-20240307", "anthropic"),
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"messages, expected_error_msg",
|
||||
[
|
||||
(
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
|
||||
},
|
||||
Message(
|
||||
content="Here are the current weather conditions for San Francisco, Tokyo, and Paris:",
|
||||
role="assistant",
|
||||
tool_calls=[
|
||||
ChatCompletionMessageToolCall(
|
||||
index=1,
|
||||
function=Function(
|
||||
arguments='{"location": "San Francisco, CA", "unit": "fahrenheit"}',
|
||||
name="get_current_weather",
|
||||
),
|
||||
id="tooluse_Jj98qn6xQlOP_PiQr-w9iA",
|
||||
type="function",
|
||||
)
|
||||
],
|
||||
function_call=None,
|
||||
),
|
||||
{
|
||||
"tool_call_id": "tooluse_Jj98qn6xQlOP_PiQr-w9iA",
|
||||
"role": "tool",
|
||||
"name": "get_current_weather",
|
||||
"content": '{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}',
|
||||
},
|
||||
],
|
||||
True,
|
||||
),
|
||||
(
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
|
||||
}
|
||||
],
|
||||
False,
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_parallel_function_call_anthropic_error_msg(
|
||||
model, provider, messages, expected_error_msg
|
||||
):
|
||||
"""
|
||||
Anthropic doesn't support tool calling without `tools=` param specified.
|
||||
|
||||
Ensure this error is thrown when `tools=` param is not specified. But tool call requests are made.
|
||||
|
||||
Reference Issue: https://github.com/BerriAI/litellm/issues/5747, https://github.com/BerriAI/litellm/issues/5388
|
||||
"""
|
||||
try:
|
||||
litellm.set_verbose = True
|
||||
|
||||
messages = messages
|
||||
|
||||
if expected_error_msg:
|
||||
with pytest.raises(litellm.UnsupportedParamsError) as e:
|
||||
second_response = litellm.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
temperature=0.2,
|
||||
seed=22,
|
||||
drop_params=True,
|
||||
) # get a new response from the model where it can see the function response
|
||||
print("second response\n", second_response)
|
||||
else:
|
||||
second_response = litellm.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
temperature=0.2,
|
||||
seed=22,
|
||||
drop_params=True,
|
||||
) # get a new response from the model where it can see the function response
|
||||
print("second response\n", second_response)
|
||||
except litellm.InternalServerError as e:
|
||||
print(e)
|
||||
except litellm.RateLimitError as e:
|
||||
print(e)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_parallel_function_call_stream():
|
||||
try:
|
||||
litellm.set_verbose = True
|
||||
# Step 1: send the conversation and available functions to the model
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What's the weather like in San Francisco, Tokyo, and Paris?",
|
||||
}
|
||||
]
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA",
|
||||
},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"enum": ["celsius", "fahrenheit"],
|
||||
},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
response = litellm.completion(
|
||||
model="gpt-3.5-turbo-1106",
|
||||
messages=messages,
|
||||
tools=tools,
|
||||
stream=True,
|
||||
tool_choice="auto", # auto is default, but we'll be explicit
|
||||
complete_response=True,
|
||||
)
|
||||
print("Response\n", response)
|
||||
# for chunk in response:
|
||||
# print(chunk)
|
||||
response_message = response.choices[0].message
|
||||
tool_calls = response_message.tool_calls
|
||||
|
||||
print("length of tool calls", len(tool_calls))
|
||||
print("Expecting there to be 3 tool calls")
|
||||
assert (
|
||||
len(tool_calls) > 1
|
||||
) # this has to call the function for SF, Tokyo and parise
|
||||
|
||||
# Step 2: check if the model wanted to call a function
|
||||
if tool_calls:
|
||||
# Step 3: call the function
|
||||
# Note: the JSON response may not always be valid; be sure to handle errors
|
||||
available_functions = {
|
||||
"get_current_weather": get_current_weather,
|
||||
} # only one function in this example, but you can have multiple
|
||||
messages.append(
|
||||
response_message
|
||||
) # extend conversation with assistant's reply
|
||||
print("Response message\n", response_message)
|
||||
# Step 4: send the info for each function call and function response to the model
|
||||
for tool_call in tool_calls:
|
||||
function_name = tool_call.function.name
|
||||
function_to_call = available_functions[function_name]
|
||||
function_args = json.loads(tool_call.function.arguments)
|
||||
function_response = function_to_call(
|
||||
location=function_args.get("location"),
|
||||
unit=function_args.get("unit"),
|
||||
)
|
||||
messages.append(
|
||||
{
|
||||
"tool_call_id": tool_call.id,
|
||||
"role": "tool",
|
||||
"name": function_name,
|
||||
"content": function_response,
|
||||
}
|
||||
) # extend conversation with function response
|
||||
print(f"messages: {messages}")
|
||||
second_response = litellm.completion(
|
||||
model="gpt-3.5-turbo-1106", messages=messages, temperature=0.2, seed=22
|
||||
) # get a new response from the model where it can see the function response
|
||||
print("second response\n", second_response)
|
||||
return second_response
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
# test_parallel_function_call_stream()
|
||||
|
||||
|
||||
@pytest.mark.skip(
|
||||
reason="Flaky test. Groq function calling is not reliable for ci/cd testing."
|
||||
)
|
||||
def test_groq_parallel_function_call():
|
||||
litellm.set_verbose = True
|
||||
try:
|
||||
# Step 1: send the conversation and available functions to the model
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a function calling LLM that uses the data extracted from get_current_weather to answer questions about the weather in San Francisco.",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What's the weather like in San Francisco?",
|
||||
},
|
||||
]
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA",
|
||||
},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"enum": ["celsius", "fahrenheit"],
|
||||
},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
response = litellm.completion(
|
||||
model="groq/llama2-70b-4096",
|
||||
messages=messages,
|
||||
tools=tools,
|
||||
tool_choice="auto", # auto is default, but we'll be explicit
|
||||
)
|
||||
print("Response\n", response)
|
||||
response_message = response.choices[0].message
|
||||
if hasattr(response_message, "tool_calls"):
|
||||
tool_calls = response_message.tool_calls
|
||||
|
||||
assert isinstance(
|
||||
response.choices[0].message.tool_calls[0].function.name, str
|
||||
)
|
||||
assert isinstance(
|
||||
response.choices[0].message.tool_calls[0].function.arguments, str
|
||||
)
|
||||
|
||||
print("length of tool calls", len(tool_calls))
|
||||
|
||||
# Step 2: check if the model wanted to call a function
|
||||
if tool_calls:
|
||||
# Step 3: call the function
|
||||
# Note: the JSON response may not always be valid; be sure to handle errors
|
||||
available_functions = {
|
||||
"get_current_weather": get_current_weather,
|
||||
} # only one function in this example, but you can have multiple
|
||||
messages.append(
|
||||
response_message
|
||||
) # extend conversation with assistant's reply
|
||||
print("Response message\n", response_message)
|
||||
# Step 4: send the info for each function call and function response to the model
|
||||
for tool_call in tool_calls:
|
||||
function_name = tool_call.function.name
|
||||
function_to_call = available_functions[function_name]
|
||||
function_args = json.loads(tool_call.function.arguments)
|
||||
function_response = function_to_call(
|
||||
location=function_args.get("location"),
|
||||
unit=function_args.get("unit"),
|
||||
)
|
||||
|
||||
messages.append(
|
||||
{
|
||||
"tool_call_id": tool_call.id,
|
||||
"role": "tool",
|
||||
"name": function_name,
|
||||
"content": function_response,
|
||||
}
|
||||
) # extend conversation with function response
|
||||
print(f"messages: {messages}")
|
||||
second_response = litellm.completion(
|
||||
model="groq/llama2-70b-4096", messages=messages
|
||||
) # get a new response from the model where it can see the function response
|
||||
print("second response\n", second_response)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
Loading…
Add table
Add a link
Reference in a new issue