mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
adding in stable diffusion usage for litellm
This commit is contained in:
parent
cba1dacc7d
commit
3638109576
6 changed files with 567 additions and 25 deletions
142
litellm/llms/diffusers/diffusers.py
Normal file
142
litellm/llms/diffusers/diffusers.py
Normal file
|
@ -0,0 +1,142 @@
|
|||
from typing import Optional, Union, List, Dict, Any
|
||||
from PIL import Image
|
||||
import io
|
||||
import base64
|
||||
import time
|
||||
|
||||
try:
|
||||
from diffusers import StableDiffusionPipeline
|
||||
except:
|
||||
pass
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ImageResponse(BaseModel):
|
||||
created: int
|
||||
data: List[Dict[str, str]] # List of dicts with "b64_json" or "url"
|
||||
|
||||
|
||||
class DiffusersImageHandler:
|
||||
def __init__(self):
|
||||
self.pipeline_cache = {} # Cache loaded pipelines
|
||||
self.device = self._get_default_device()
|
||||
|
||||
def _get_default_device(self):
|
||||
"""Determine the best available device"""
|
||||
import torch
|
||||
|
||||
if torch.cuda.is_available():
|
||||
return "cuda"
|
||||
elif torch.backends.mps.is_available(): # For Apple Silicon
|
||||
return "mps"
|
||||
else:
|
||||
return "cpu"
|
||||
|
||||
def _load_pipeline(
|
||||
self, model: str, device: Optional[str] = None
|
||||
) -> StableDiffusionPipeline:
|
||||
"""Load and cache diffusion pipeline"""
|
||||
device = device or self.device
|
||||
|
||||
if model not in self.pipeline_cache:
|
||||
try:
|
||||
pipe = StableDiffusionPipeline.from_pretrained(model)
|
||||
pipe = pipe.to(device)
|
||||
self.pipeline_cache[model] = pipe
|
||||
except RuntimeError as e:
|
||||
if "CUDA" in str(e):
|
||||
# Fallback to CPU if CUDA fails
|
||||
verbose_logger.warning(f"Falling back to CPU: {str(e)}")
|
||||
pipe = pipe.to("cpu")
|
||||
self.pipeline_cache[model] = pipe
|
||||
else:
|
||||
raise
|
||||
|
||||
return self.pipeline_cache[model]
|
||||
|
||||
def _image_to_b64(self, image: Image.Image) -> str:
|
||||
"""Convert PIL Image to base64 string"""
|
||||
buffered = io.BytesIO()
|
||||
image.save(buffered, format="PNG")
|
||||
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
||||
|
||||
def generate_image(
|
||||
self,
|
||||
prompt: str,
|
||||
model: str = "runwayml/stable-diffusion-v1-5",
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
num_inference_steps: int = 50,
|
||||
guidance_scale: float = 7.5,
|
||||
negative_prompt: Optional[str] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
device: str = "cuda",
|
||||
**kwargs,
|
||||
) -> ImageResponse:
|
||||
"""
|
||||
Generate image from text prompt
|
||||
Args:
|
||||
prompt: Text prompt to generate image from
|
||||
model: Diffusers model ID
|
||||
height: Height of output image
|
||||
width: Width of output image
|
||||
num_inference_steps: Number of denoising steps
|
||||
guidance_scale: Scale for classifier-free guidance
|
||||
negative_prompt: Negative prompt to avoid certain content
|
||||
num_images_per_prompt: Number of images to generate
|
||||
device: Device to run on ('cuda' or 'cpu')
|
||||
Returns:
|
||||
ImageResponse with base64 encoded images
|
||||
"""
|
||||
pipe = self._load_pipeline(model, device)
|
||||
|
||||
# Generate image(s)
|
||||
images = pipe(
|
||||
prompt=prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=num_inference_steps,
|
||||
guidance_scale=guidance_scale,
|
||||
negative_prompt=negative_prompt,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
**kwargs,
|
||||
).images
|
||||
|
||||
# Convert to response format
|
||||
image_data = [{"b64_json": self._image_to_b64(img)} for img in images]
|
||||
|
||||
return ImageResponse(created=int(time.time()), data=image_data)
|
||||
|
||||
def generate_variation(
|
||||
self,
|
||||
image: Union[Image.Image, str, bytes], # Accepts PIL, file path, or bytes
|
||||
prompt: Optional[str] = None,
|
||||
model: str = "runwayml/stable-diffusion-v1-5",
|
||||
strength: float = 0.8,
|
||||
**kwargs,
|
||||
) -> ImageResponse:
|
||||
"""
|
||||
Generate variation of input image
|
||||
Args:
|
||||
image: Input image (PIL, file path, or bytes)
|
||||
prompt: Optional text prompt to guide variation
|
||||
model: Diffusers model ID
|
||||
strength: Strength of variation (0-1)
|
||||
Returns:
|
||||
ImageResponse with base64 encoded images
|
||||
"""
|
||||
# Convert input to PIL Image
|
||||
if isinstance(image, str):
|
||||
image = Image.open(image)
|
||||
elif isinstance(image, bytes):
|
||||
image = Image.open(io.BytesIO(image))
|
||||
|
||||
pipe = self._load_pipeline(model)
|
||||
|
||||
# Generate variation
|
||||
result = pipe(prompt=prompt, image=image, strength=strength, **kwargs)
|
||||
|
||||
# Convert to response format
|
||||
image_data = [{"b64_json": self._image_to_b64(result.images[0])}]
|
||||
|
||||
return ImageResponse(created=int(time.time()), data=image_data)
|
Loading…
Add table
Add a link
Reference in a new issue