mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
feat - add cancel_fine_tuning_job
This commit is contained in:
parent
3e3f9e3f0c
commit
3802eaa6b5
2 changed files with 134 additions and 0 deletions
|
@ -180,3 +180,87 @@ def create_fine_tuning_job(
|
|||
return response
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
||||
def cancel_fine_tuning_job(
|
||||
fine_tuning_job_id: str,
|
||||
custom_llm_provider: Literal["openai"] = "openai",
|
||||
extra_headers: Optional[Dict[str, str]] = None,
|
||||
extra_body: Optional[Dict[str, str]] = None,
|
||||
**kwargs,
|
||||
) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]:
|
||||
"""
|
||||
Creates a fine-tuning job which begins the process of creating a new model from a given dataset.
|
||||
|
||||
Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete
|
||||
|
||||
"""
|
||||
try:
|
||||
optional_params = GenericLiteLLMParams(**kwargs)
|
||||
if custom_llm_provider == "openai":
|
||||
|
||||
# for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
|
||||
api_base = (
|
||||
optional_params.api_base
|
||||
or litellm.api_base
|
||||
or os.getenv("OPENAI_API_BASE")
|
||||
or "https://api.openai.com/v1"
|
||||
)
|
||||
organization = (
|
||||
optional_params.organization
|
||||
or litellm.organization
|
||||
or os.getenv("OPENAI_ORGANIZATION", None)
|
||||
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
|
||||
)
|
||||
# set API KEY
|
||||
api_key = (
|
||||
optional_params.api_key
|
||||
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
|
||||
or litellm.openai_key
|
||||
or os.getenv("OPENAI_API_KEY")
|
||||
)
|
||||
### TIMEOUT LOGIC ###
|
||||
timeout = (
|
||||
optional_params.timeout or kwargs.get("request_timeout", 600) or 600
|
||||
)
|
||||
# set timeout for 10 minutes by default
|
||||
|
||||
if (
|
||||
timeout is not None
|
||||
and isinstance(timeout, httpx.Timeout)
|
||||
and supports_httpx_timeout(custom_llm_provider) == False
|
||||
):
|
||||
read_timeout = timeout.read or 600
|
||||
timeout = read_timeout # default 10 min timeout
|
||||
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
|
||||
timeout = float(timeout) # type: ignore
|
||||
elif timeout is None:
|
||||
timeout = 600.0
|
||||
|
||||
_is_async = kwargs.pop("acreate_fine_tuning_job", False) is True
|
||||
|
||||
response = openai_fine_tuning_instance.cancel_fine_tuning_job(
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
organization=organization,
|
||||
fine_tuning_job_id=fine_tuning_job_id,
|
||||
timeout=timeout,
|
||||
max_retries=optional_params.max_retries,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
else:
|
||||
raise litellm.exceptions.BadRequestError(
|
||||
message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format(
|
||||
custom_llm_provider
|
||||
),
|
||||
model="n/a",
|
||||
llm_provider=custom_llm_provider,
|
||||
response=httpx.Response(
|
||||
status_code=400,
|
||||
content="Unsupported provider",
|
||||
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
|
||||
),
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue