Litellm dev 10 14 2024 (#6221)

* fix(__init__.py): expose DualCache, RedisCache, InMemoryCache on root

abstract internal file refactors from impacting users

* feat(utils.py): handle invalid openai parallel tool calling response

Fixes https://community.openai.com/t/model-tries-to-call-unknown-function-multi-tool-use-parallel/490653

* docs(bedrock.md): clarify all bedrock models are supported

Closes https://github.com/BerriAI/litellm/issues/6168#issuecomment-2412082236
This commit is contained in:
Krish Dholakia 2024-10-14 22:11:14 -07:00 committed by GitHub
parent cda0a993e2
commit 39486e2003
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 240 additions and 5 deletions

View file

@ -79,6 +79,7 @@ from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.secret_managers.main import get_secret
from litellm.types.llms.openai import (
AllMessageValues,
ChatCompletionAssistantToolCall,
ChatCompletionNamedToolChoiceParam,
ChatCompletionToolParam,
ChatCompletionToolParamFunctionChunk,
@ -89,11 +90,13 @@ from litellm.types.utils import (
OPENAI_RESPONSE_HEADERS,
CallTypes,
ChatCompletionDeltaToolCall,
ChatCompletionMessageToolCall,
Choices,
CostPerToken,
Delta,
Embedding,
EmbeddingResponse,
Function,
ImageResponse,
Message,
ModelInfo,
@ -5612,6 +5615,54 @@ def convert_to_streaming_response(response_object: Optional[dict] = None):
yield model_response_object
from collections import defaultdict
def _handle_invalid_parallel_tool_calls(
tool_calls: List[ChatCompletionMessageToolCall],
):
"""
Handle hallucinated parallel tool call from openai - https://community.openai.com/t/model-tries-to-call-unknown-function-multi-tool-use-parallel/490653
Code modified from: https://github.com/phdowling/openai_multi_tool_use_parallel_patch/blob/main/openai_multi_tool_use_parallel_patch.py
"""
if tool_calls is None:
return
replacements: Dict[int, List[ChatCompletionMessageToolCall]] = defaultdict(list)
for i, tool_call in enumerate(tool_calls):
current_function = tool_call.function.name
function_args = json.loads(tool_call.function.arguments)
if current_function == "multi_tool_use.parallel":
verbose_logger.debug(
"OpenAI did a weird pseudo-multi-tool-use call, fixing call structure.."
)
for _fake_i, _fake_tool_use in enumerate(function_args["tool_uses"]):
_function_args = _fake_tool_use["parameters"]
_current_function = _fake_tool_use["recipient_name"]
if _current_function.startswith("functions."):
_current_function = _current_function[len("functions.") :]
fixed_tc = ChatCompletionMessageToolCall(
id=f"{tool_call.id}_{_fake_i}",
type="function",
function=Function(
name=_current_function, arguments=json.dumps(_function_args)
),
)
replacements[i].append(fixed_tc)
shift = 0
for i, replacement in replacements.items():
tool_calls[:] = (
tool_calls[: i + shift] + replacement + tool_calls[i + shift + 1 :]
)
shift += len(replacement)
return tool_calls
def convert_to_model_response_object(
response_object: Optional[dict] = None,
model_response_object: Optional[
@ -5707,6 +5758,18 @@ def convert_to_model_response_object(
for idx, choice in enumerate(response_object["choices"]):
## HANDLE JSON MODE - anthropic returns single function call]
tool_calls = choice["message"].get("tool_calls", None)
if tool_calls is not None:
_openai_tool_calls = []
for _tc in tool_calls:
_openai_tc = ChatCompletionMessageToolCall(**_tc)
_openai_tool_calls.append(_openai_tc)
fixed_tool_calls = _handle_invalid_parallel_tool_calls(
_openai_tool_calls
)
if fixed_tool_calls is not None:
tool_calls = fixed_tool_calls
message: Optional[Message] = None
finish_reason: Optional[str] = None
if (
@ -5726,7 +5789,7 @@ def convert_to_model_response_object(
content=choice["message"].get("content", None),
role=choice["message"]["role"] or "assistant",
function_call=choice["message"].get("function_call", None),
tool_calls=choice["message"].get("tool_calls", None),
tool_calls=tool_calls,
)
finish_reason = choice.get("finish_reason", None)
if finish_reason is None: