(docs) remove bloat cookbook

This commit is contained in:
ishaan-jaff 2023-11-13 14:41:21 -08:00
parent dd925d3de3
commit 39b5b03ac3
2 changed files with 0 additions and 219 deletions

View file

@ -1,45 +0,0 @@
from flask import Flask, request, jsonify, abort, Response
from flask_cors import CORS
from litellm import completion
import os, dotenv
import random
dotenv.load_dotenv()
# TODO: set your keys in .env or here:
# os.environ["OPENAI_API_KEY"] = "" # set your openai key here or in your .env
# see supported models, keys here:
app = Flask(__name__)
CORS(app)
@app.route('/')
def index():
return 'received!', 200
# Dictionary of LLM functions with their A/B test ratios, should sum to 1 :)
llm_dict = {
"gpt-4": 0.2,
"together_ai/togethercomputer/llama-2-70b-chat": 0.4,
"claude-2": 0.2,
"claude-1.2": 0.2
}
@app.route('/chat/completions', methods=["POST"])
def api_completion():
data = request.json
try:
# pass in data to completion function, unpack data
selected_llm = random.choices(list(llm_dict.keys()), weights=list(llm_dict.values()))[0]
response = completion(**data, model=selected_llm)
except Exception as e:
print(f"got error{e}")
return response, 200
if __name__ == "__main__":
from waitress import serve
print("starting server")
serve(app, host="0.0.0.0", port=5000, threads=500)

View file

@ -1,174 +0,0 @@
<h1 align="center">
🚅 LiteLLM - A/B Testing LLMs in Production
</h1>
<p align="center">
<p align="center">Call all LLM APIs using the OpenAI format [Anthropic, Huggingface, Cohere, Azure OpenAI etc.]</p>
</p>
<h4 align="center">
<a href="https://pypi.org/project/litellm/" target="_blank">
<img src="https://img.shields.io/pypi/v/litellm.svg" alt="PyPI Version">
</a>
<a href="https://pypi.org/project/litellm/0.1.1/" target="_blank">
<img src="https://img.shields.io/badge/stable%20version-v0.1.424-blue?color=green&link=https://pypi.org/project/litellm/0.1.1/" alt="Stable Version">
</a>
<a href="https://dl.circleci.com/status-badge/redirect/gh/BerriAI/litellm/tree/main" target="_blank">
<img src="https://dl.circleci.com/status-badge/img/gh/BerriAI/litellm/tree/main.svg?style=svg" alt="CircleCI">
</a>
<img src="https://img.shields.io/pypi/dm/litellm" alt="Downloads">
<a href="https://discord.gg/wuPM9dRgDw" target="_blank">
<img src="https://dcbadge.vercel.app/api/server/wuPM9dRgDw?style=flat">
</a>
</h4>
<h4 align="center">
<a href="https://docs.litellm.ai/docs/providers" target="_blank">100+ Supported Models</a> |
<a href="https://docs.litellm.ai/docs/" target="_blank">Docs</a> |
<a href="https://litellm.ai/playground" target="_blank">Demo Website</a>
</h4>
<h4 align="center">
![pika-1693451518986-1x](https://github.com/BerriAI/litellm/assets/29436595/1cbf29a3-5313-4f61-ad6e-481dd8737309)
</h4>
LiteLLM allows you to call 100+ LLMs using completion
## Usage - A/B Test LLMs in Production
### Set your A/B Test Ratios
```python
llm_dict = {
"gpt-4": 0.2,
"together_ai/togethercomputer/llama-2-70b-chat": 0.4,
"claude-2": 0.2,
"claude-1.2": 0.2
}
```
### Select LLM + Make Completion call
Use weighted selection, and call the model using litellm.completion
```python
from litellm import completion
selected_llm = random.choices(list(llm_dict.keys()), weights=list(llm_dict.values()))[0]
response = completion(model=selected_model, messages=[{ "content": "Hello, how are you?","role": "user"}])
```
### Viewing Logs, Feedback
In order to view logs set `litellm.token=<your-email>`
```python
import litellm
litellm.token='ishaan_discord@berri.ai'
```
Your logs will be available at:
https://lite-llm-abtest-nckmhi7ue-clerkieai.vercel.app/<your-token>
### Live Demo UI
👉https://lite-llm-abtest-nckmhi7ue-clerkieai.vercel.app/ishaan_discord@berri.ai
## Viewing Responses + Custom Scores
LiteLLM UI allows you to view responses and set custom scores for each response
<img width="626" alt="Screenshot 2023-08-30 at 8 08 59 PM" src="https://github.com/BerriAI/litellm/assets/29436595/7dc62d98-fb47-4b86-ad6f-f302b28bf15d">
# Using LiteLLM A/B Testing Server
## Setup
### Install LiteLLM
```
pip install litellm
```
### Clone LiteLLM Git Repo
```
git clone https://github.com/BerriAI/litellm/
```
### Navigate to LiteLLM-A/B Test Server
```
cd litellm/cookbook/llm-ab-test-server
```
### Run the Server
```
python3 main.py
```
### Set your LLM Configs
Set your LLMs and LLM weights you want to run A/B testing with
In main.py set your selected LLMs you want to AB test in `llm_dict`
You can A/B test more than 100+ LLMs using LiteLLM https://docs.litellm.ai/docs/providers
```python
llm_dict = {
"gpt-4": 0.2,
"together_ai/togethercomputer/llama-2-70b-chat": 0.4,
"claude-2": 0.2,
"claude-1.2": 0.2
}
```
#### Setting your API Keys
Set your LLM API keys in a .env file in the directory or set them as `os.environ` variables.
See https://docs.litellm.ai/docs/providers for the format of API keys
LiteLLM generalizes api keys to follow the following format
`PROVIDER_API_KEY`
## Making Requests to the LiteLLM Server Locally
The server follows the Input/Output format set by the OpenAI Chat Completions API
Here is an example request made the LiteLLM Server
### Python
```python
import requests
import json
url = "http://localhost:5000/chat/completions"
payload = json.dumps({
"messages": [
{
"content": "who is CTO of litellm",
"role": "user"
}
]
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
```
### Curl Command
```
curl --location 'http://localhost:5000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"messages": [
{
"content": "who is CTO of litellm",
"role": "user"
}
]
}
'
```
# support / talk with founders
- [Schedule Demo 👋](https://calendly.com/d/4mp-gd3-k5k/berriai-1-1-onboarding-litellm-hosted-version)
- [Community Discord 💭](https://discord.gg/wuPM9dRgDw)
- Our numbers 📞 +1 (770) 8783-106 / +1 (412) 618-6238
- Our emails ✉️ ishaan@berri.ai / krrish@berri.ai
# why did we build this
- **Need for simplicity**: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI, Cohere