mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
refactor(azure.py): working azure completion calls with openai v1 sdk
This commit is contained in:
parent
d0bd932b3c
commit
39c2597c33
9 changed files with 70 additions and 58 deletions
|
@ -2,6 +2,7 @@
|
|||
import threading, requests
|
||||
from typing import Callable, List, Optional, Dict, Union
|
||||
from litellm.caching import Cache
|
||||
import httpx
|
||||
|
||||
input_callback: List[Union[str, Callable]] = []
|
||||
success_callback: List[Union[str, Callable]] = []
|
||||
|
@ -44,7 +45,7 @@ max_budget: float = 0.0 # set the max budget across all providers
|
|||
_current_cost = 0 # private variable, used if max budget is set
|
||||
error_logs: Dict = {}
|
||||
add_function_to_prompt: bool = False # if function calling not supported by api, append function call details to system prompt
|
||||
client_session: Optional[requests.Session] = None
|
||||
client_session: Optional[httpx.Client] = None
|
||||
model_fallbacks: Optional[List] = None
|
||||
model_cost_map_url: str = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
|
||||
num_retries: Optional[int] = None
|
||||
|
|
|
@ -4,12 +4,14 @@ from .base import BaseLLM
|
|||
from litellm.utils import ModelResponse, Choices, Message, CustomStreamWrapper, convert_to_model_response_object
|
||||
from typing import Callable, Optional
|
||||
from litellm import OpenAIConfig
|
||||
import aiohttp
|
||||
import httpx
|
||||
|
||||
class AzureOpenAIError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
def __init__(self, status_code, message, request: httpx.Request, response: httpx.Response):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = request
|
||||
self.response = response
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
@ -64,7 +66,7 @@ class AzureOpenAIConfig(OpenAIConfig):
|
|||
top_p)
|
||||
|
||||
class AzureChatCompletion(BaseLLM):
|
||||
_client_session: requests.Session
|
||||
_client_session: httpx.Client
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
@ -126,17 +128,7 @@ class AzureChatCompletion(BaseLLM):
|
|||
else:
|
||||
return self.acompletion(api_base=api_base, data=data, headers=headers, model_response=model_response)
|
||||
elif "stream" in optional_params and optional_params["stream"] == True:
|
||||
response = self._client_session.post(
|
||||
url=api_base,
|
||||
json=data,
|
||||
headers=headers,
|
||||
stream=optional_params["stream"]
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise AzureOpenAIError(status_code=response.status_code, message=response.text)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
return response.iter_lines()
|
||||
return self.streaming(logging_obj=logging_obj, api_base=api_base, data=data, headers=headers, model_response=model_response, model=model)
|
||||
else:
|
||||
response = self._client_session.post(
|
||||
url=api_base,
|
||||
|
@ -144,7 +136,7 @@ class AzureChatCompletion(BaseLLM):
|
|||
headers=headers,
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise AzureOpenAIError(status_code=response.status_code, message=response.text)
|
||||
raise AzureOpenAIError(status_code=response.status_code, message=response.text, request=response.request, response=response)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
return convert_to_model_response_object(response_object=response.json(), model_response_object=model_response)
|
||||
|
@ -152,39 +144,61 @@ class AzureChatCompletion(BaseLLM):
|
|||
exception_mapping_worked = True
|
||||
raise e
|
||||
except Exception as e:
|
||||
if exception_mapping_worked:
|
||||
raise e
|
||||
else:
|
||||
import traceback
|
||||
raise AzureOpenAIError(status_code=500, message=traceback.format_exc())
|
||||
raise e
|
||||
|
||||
async def acompletion(self, api_base: str, data: dict, headers: dict, model_response: ModelResponse):
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(api_base, json=data, headers=headers, ssl=False) as response:
|
||||
response_json = await response.json()
|
||||
if response.status != 200:
|
||||
raise AzureOpenAIError(status_code=response.status, message=response.text)
|
||||
async with httpx.AsyncClient(timeout=600) as client:
|
||||
response = await client.post(api_base, json=data, headers=headers)
|
||||
response_json = response.json()
|
||||
if response.status_code != 200:
|
||||
raise AzureOpenAIError(status_code=response.status_code, message=response.text)
|
||||
|
||||
|
||||
## RESPONSE OBJECT
|
||||
return convert_to_model_response_object(response_object=response_json, model_response_object=model_response)
|
||||
## RESPONSE OBJECT
|
||||
return convert_to_model_response_object(response_object=response_json, model_response_object=model_response)
|
||||
|
||||
def streaming(self,
|
||||
logging_obj,
|
||||
api_base: str,
|
||||
data: dict,
|
||||
headers: dict,
|
||||
model_response: ModelResponse,
|
||||
model: str
|
||||
):
|
||||
with self._client_session.stream(
|
||||
url=f"{api_base}",
|
||||
json=data,
|
||||
headers=headers,
|
||||
method="POST"
|
||||
) as response:
|
||||
if response.status_code != 200:
|
||||
raise AzureOpenAIError(status_code=response.status_code, message=response.text(), request=self._client_session.request, response=response)
|
||||
|
||||
completion_stream = response.iter_lines()
|
||||
streamwrapper = CustomStreamWrapper(completion_stream=completion_stream, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
||||
for transformed_chunk in streamwrapper:
|
||||
yield transformed_chunk
|
||||
|
||||
async def async_streaming(self,
|
||||
logging_obj,
|
||||
api_base: str,
|
||||
data: dict, headers: dict,
|
||||
data: dict,
|
||||
headers: dict,
|
||||
model_response: ModelResponse,
|
||||
model: str):
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(api_base, json=data, headers=headers, ssl=False) as response:
|
||||
# Check if the request was successful (status code 200)
|
||||
if response.status != 200:
|
||||
raise AzureOpenAIError(status_code=response.status, message=await response.text())
|
||||
|
||||
# Handle the streamed response
|
||||
stream_wrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="azure",logging_obj=logging_obj)
|
||||
async for transformed_chunk in stream_wrapper:
|
||||
yield transformed_chunk
|
||||
client = httpx.AsyncClient()
|
||||
async with client.stream(
|
||||
url=f"{api_base}",
|
||||
json=data,
|
||||
headers=headers,
|
||||
method="POST"
|
||||
) as response:
|
||||
if response.status_code != 200:
|
||||
raise AzureOpenAIError(status_code=response.status_code, message=response.text(), request=self._client_session.request, response=response)
|
||||
|
||||
streamwrapper = CustomStreamWrapper(completion_stream=response.aiter_lines(), model=model, custom_llm_provider="azure",logging_obj=logging_obj)
|
||||
async for transformed_chunk in streamwrapper:
|
||||
yield transformed_chunk
|
||||
|
||||
def embedding(self,
|
||||
model: str,
|
||||
|
|
|
@ -249,7 +249,7 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
response = await client.post(api_base, json=data, headers=headers)
|
||||
response_json = response.json()
|
||||
if response.status_code != 200:
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text)
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text, request=response.request, response=response)
|
||||
|
||||
|
||||
## RESPONSE OBJECT
|
||||
|
|
|
@ -447,9 +447,7 @@ def completion(
|
|||
logging_obj=logging,
|
||||
acompletion=acompletion
|
||||
)
|
||||
if optional_params.get("stream", False) and acompletion is False:
|
||||
response = CustomStreamWrapper(response, model, custom_llm_provider=custom_llm_provider, logging_obj=logging)
|
||||
return response
|
||||
|
||||
## LOGGING
|
||||
logging.post_call(
|
||||
input=messages,
|
||||
|
|
|
@ -28,13 +28,13 @@ def test_async_response():
|
|||
user_message = "Hello, how are you?"
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
try:
|
||||
response = await acompletion(model="gpt-3.5-turbo", messages=messages)
|
||||
response = await acompletion(model="azure/chatgpt-v-2", messages=messages)
|
||||
print(f"response: {response}")
|
||||
except Exception as e:
|
||||
pytest.fail(f"An exception occurred: {e}")
|
||||
|
||||
asyncio.run(test_get_response())
|
||||
test_async_response()
|
||||
# test_async_response()
|
||||
|
||||
def test_get_response_streaming():
|
||||
import asyncio
|
||||
|
@ -42,7 +42,7 @@ def test_get_response_streaming():
|
|||
user_message = "write a short poem in one sentence"
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
try:
|
||||
response = await acompletion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
||||
response = await acompletion(model="azure/chatgpt-v-2", messages=messages, stream=True)
|
||||
print(type(response))
|
||||
|
||||
import inspect
|
||||
|
@ -65,7 +65,7 @@ def test_get_response_streaming():
|
|||
asyncio.run(test_async_call())
|
||||
|
||||
|
||||
# test_get_response_streaming()
|
||||
test_get_response_streaming()
|
||||
|
||||
def test_get_response_non_openai_streaming():
|
||||
import asyncio
|
||||
|
|
|
@ -421,7 +421,7 @@ def test_completion_openai():
|
|||
pass
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
test_completion_openai()
|
||||
# test_completion_openai()
|
||||
|
||||
def test_completion_text_openai():
|
||||
try:
|
||||
|
@ -634,7 +634,7 @@ def test_completion_azure():
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# test_completion_azure()
|
||||
test_completion_azure()
|
||||
def test_completion_azure2():
|
||||
# test if we can pass api_base, api_version and api_key in compleition()
|
||||
try:
|
||||
|
|
|
@ -59,7 +59,7 @@ def test_context_window(model):
|
|||
|
||||
@pytest.mark.parametrize("model", models)
|
||||
def test_context_window_with_fallbacks(model):
|
||||
ctx_window_fallback_dict = {"command-nightly": "claude-2", "gpt-3.5-turbo-instruct": "gpt-3.5-turbo-16k"}
|
||||
ctx_window_fallback_dict = {"command-nightly": "claude-2", "gpt-3.5-turbo-instruct": "gpt-3.5-turbo-16k", "azure/chatgpt-v-2": "gpt-3.5-turbo-16k"}
|
||||
sample_text = "how does a court case get to the Supreme Court?" * 1000
|
||||
messages = [{"content": sample_text, "role": "user"}]
|
||||
|
||||
|
@ -67,8 +67,8 @@ def test_context_window_with_fallbacks(model):
|
|||
|
||||
# for model in litellm.models_by_provider["bedrock"]:
|
||||
# test_context_window(model=model)
|
||||
test_context_window(model="azure/chatgpt-v-2")
|
||||
# test_context_window_with_fallbacks(model="gpt-3.5-turbo")
|
||||
# test_context_window(model="azure/chatgpt-v-2")
|
||||
# test_context_window_with_fallbacks(model="azure/chatgpt-v-2")
|
||||
# Test 2: InvalidAuth Errors
|
||||
@pytest.mark.parametrize("model", models)
|
||||
def invalid_auth(model): # set the model key to an invalid key, depending on the model
|
||||
|
@ -163,7 +163,7 @@ def invalid_auth(model): # set the model key to an invalid key, depending on th
|
|||
|
||||
# for model in litellm.models_by_provider["bedrock"]:
|
||||
# invalid_auth(model=model)
|
||||
# invalid_auth(model="gpt-3.5-turbo")
|
||||
# invalid_auth(model="azure/chatgpt-v-2")
|
||||
|
||||
# Test 3: Invalid Request Error
|
||||
@pytest.mark.parametrize("model", models)
|
||||
|
@ -173,7 +173,7 @@ def test_invalid_request_error(model):
|
|||
with pytest.raises(BadRequestError):
|
||||
completion(model=model, messages=messages, max_tokens="hello world")
|
||||
|
||||
# test_invalid_request_error(model="gpt-3.5-turbo")
|
||||
# test_invalid_request_error(model="azure/chatgpt-v-2")
|
||||
# Test 3: Rate Limit Errors
|
||||
# def test_model_call(model):
|
||||
# try:
|
||||
|
|
|
@ -372,7 +372,7 @@ def test_completion_azure_stream():
|
|||
print(f"completion_response: {complete_response}")
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
# test_completion_azure_stream()
|
||||
test_completion_azure_stream()
|
||||
|
||||
def test_completion_claude_stream():
|
||||
try:
|
||||
|
|
|
@ -3845,7 +3845,8 @@ def exception_type(
|
|||
raise AuthenticationError(
|
||||
message=f"AzureException - {original_exception.message}",
|
||||
llm_provider="azure",
|
||||
model=model
|
||||
model=model,
|
||||
response=original_exception.response
|
||||
)
|
||||
elif original_exception.status_code == 408:
|
||||
exception_mapping_worked = True
|
||||
|
@ -4225,7 +4226,6 @@ class CustomStreamWrapper:
|
|||
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
||||
|
||||
def handle_azure_chunk(self, chunk):
|
||||
chunk = chunk.decode("utf-8")
|
||||
is_finished = False
|
||||
finish_reason = ""
|
||||
text = ""
|
||||
|
@ -4299,7 +4299,6 @@ class CustomStreamWrapper:
|
|||
|
||||
def handle_openai_text_completion_chunk(self, chunk):
|
||||
try:
|
||||
# str_line = chunk.decode("utf-8") # Convert bytes to string
|
||||
str_line = chunk
|
||||
text = ""
|
||||
is_finished = False
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue