mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
[Feat] Support for all litellm providers on Responses API (works with Codex) - Anthropic, Bedrock API, VertexAI, Ollama (#10132)
* transform request * basic handler for LiteLLMCompletionTransformationHandler * complete transform litellm to responses api * fixes to test * fix stream=True * fix streaming iterator * fixes for transformation * fixes for anthropic codex support * fix pass response_api_optional_params * test anthropic responses api tools * update responses types * working codex with litellm * add session handler * fixes streaming iterator * fix handler * add litellm codex example * fix code quality * test fix * docs litellm codex * litellm codexdoc * docs openai codex with litellm * docs litellm openai codex * litellm codex * linting fixes for transforming responses API * fix import error * fix responses api test * add sync iterator support for responses api
This commit is contained in:
parent
3e87ec4f16
commit
3d5022bd79
14 changed files with 1282 additions and 53 deletions
|
@ -1,6 +1,13 @@
|
|||
model_list:
|
||||
- model_name: fake-openai-endpoint
|
||||
- model_name: openai/*
|
||||
litellm_params:
|
||||
model: openai/fake
|
||||
api_key: fake-key
|
||||
api_base: https://exampleopenaiendpoint-production.up.railway.app/
|
||||
model: openai/*
|
||||
- model_name: anthropic/*
|
||||
litellm_params:
|
||||
model: anthropic/*
|
||||
- model_name: gemini/*
|
||||
litellm_params:
|
||||
model: gemini/*
|
||||
litellm_settings:
|
||||
drop_params: true
|
||||
|
||||
|
|
115
litellm/responses/litellm_completion_transformation/handler.py
Normal file
115
litellm/responses/litellm_completion_transformation/handler.py
Normal file
|
@ -0,0 +1,115 @@
|
|||
"""
|
||||
Handler for transforming responses api requests to litellm.completion requests
|
||||
"""
|
||||
|
||||
from typing import Any, Coroutine, Optional, Union
|
||||
|
||||
import litellm
|
||||
from litellm.responses.litellm_completion_transformation.streaming_iterator import (
|
||||
LiteLLMCompletionStreamingIterator,
|
||||
)
|
||||
from litellm.responses.litellm_completion_transformation.transformation import (
|
||||
LiteLLMCompletionResponsesConfig,
|
||||
)
|
||||
from litellm.responses.streaming_iterator import BaseResponsesAPIStreamingIterator
|
||||
from litellm.types.llms.openai import (
|
||||
ResponseInputParam,
|
||||
ResponsesAPIOptionalRequestParams,
|
||||
ResponsesAPIResponse,
|
||||
)
|
||||
from litellm.types.utils import ModelResponse
|
||||
|
||||
|
||||
class LiteLLMCompletionTransformationHandler:
|
||||
|
||||
def response_api_handler(
|
||||
self,
|
||||
model: str,
|
||||
input: Union[str, ResponseInputParam],
|
||||
responses_api_request: ResponsesAPIOptionalRequestParams,
|
||||
custom_llm_provider: Optional[str] = None,
|
||||
_is_async: bool = False,
|
||||
stream: Optional[bool] = None,
|
||||
**kwargs,
|
||||
) -> Union[
|
||||
ResponsesAPIResponse,
|
||||
BaseResponsesAPIStreamingIterator,
|
||||
Coroutine[
|
||||
Any, Any, Union[ResponsesAPIResponse, BaseResponsesAPIStreamingIterator]
|
||||
],
|
||||
]:
|
||||
litellm_completion_request: dict = (
|
||||
LiteLLMCompletionResponsesConfig.transform_responses_api_request_to_chat_completion_request(
|
||||
model=model,
|
||||
input=input,
|
||||
responses_api_request=responses_api_request,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
stream=stream,
|
||||
**kwargs,
|
||||
)
|
||||
)
|
||||
|
||||
if _is_async:
|
||||
return self.async_response_api_handler(
|
||||
litellm_completion_request=litellm_completion_request,
|
||||
request_input=input,
|
||||
responses_api_request=responses_api_request,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
litellm_completion_response: Union[
|
||||
ModelResponse, litellm.CustomStreamWrapper
|
||||
] = litellm.completion(
|
||||
**litellm_completion_request,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
if isinstance(litellm_completion_response, ModelResponse):
|
||||
responses_api_response: ResponsesAPIResponse = (
|
||||
LiteLLMCompletionResponsesConfig.transform_chat_completion_response_to_responses_api_response(
|
||||
chat_completion_response=litellm_completion_response,
|
||||
request_input=input,
|
||||
responses_api_request=responses_api_request,
|
||||
)
|
||||
)
|
||||
|
||||
return responses_api_response
|
||||
|
||||
elif isinstance(litellm_completion_response, litellm.CustomStreamWrapper):
|
||||
return LiteLLMCompletionStreamingIterator(
|
||||
litellm_custom_stream_wrapper=litellm_completion_response,
|
||||
request_input=input,
|
||||
responses_api_request=responses_api_request,
|
||||
)
|
||||
|
||||
async def async_response_api_handler(
|
||||
self,
|
||||
litellm_completion_request: dict,
|
||||
request_input: Union[str, ResponseInputParam],
|
||||
responses_api_request: ResponsesAPIOptionalRequestParams,
|
||||
**kwargs,
|
||||
) -> Union[ResponsesAPIResponse, BaseResponsesAPIStreamingIterator]:
|
||||
litellm_completion_response: Union[
|
||||
ModelResponse, litellm.CustomStreamWrapper
|
||||
] = await litellm.acompletion(
|
||||
**litellm_completion_request,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
if isinstance(litellm_completion_response, ModelResponse):
|
||||
responses_api_response: ResponsesAPIResponse = (
|
||||
LiteLLMCompletionResponsesConfig.transform_chat_completion_response_to_responses_api_response(
|
||||
chat_completion_response=litellm_completion_response,
|
||||
request_input=request_input,
|
||||
responses_api_request=responses_api_request,
|
||||
)
|
||||
)
|
||||
|
||||
return responses_api_response
|
||||
|
||||
elif isinstance(litellm_completion_response, litellm.CustomStreamWrapper):
|
||||
return LiteLLMCompletionStreamingIterator(
|
||||
litellm_custom_stream_wrapper=litellm_completion_response,
|
||||
request_input=request_input,
|
||||
responses_api_request=responses_api_request,
|
||||
)
|
|
@ -0,0 +1,59 @@
|
|||
"""
|
||||
Responses API has previous_response_id, which is the id of the previous response.
|
||||
|
||||
LiteLLM needs to maintain a cache of the previous response input, output, previous_response_id, and model.
|
||||
|
||||
This class handles that cache.
|
||||
"""
|
||||
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from litellm.caching import InMemoryCache
|
||||
from litellm.types.llms.openai import ResponseInputParam, ResponsesAPIResponse
|
||||
|
||||
RESPONSES_API_PREVIOUS_RESPONSES_CACHE = InMemoryCache()
|
||||
MAX_PREV_SESSION_INPUTS = 50
|
||||
|
||||
|
||||
class ResponsesAPISessionElement(TypedDict, total=False):
|
||||
input: Union[str, ResponseInputParam]
|
||||
output: ResponsesAPIResponse
|
||||
response_id: str
|
||||
previous_response_id: Optional[str]
|
||||
|
||||
|
||||
class SessionHandler:
|
||||
|
||||
def add_completed_response_to_cache(
|
||||
self, response_id: str, session_element: ResponsesAPISessionElement
|
||||
):
|
||||
RESPONSES_API_PREVIOUS_RESPONSES_CACHE.set_cache(
|
||||
key=response_id, value=session_element
|
||||
)
|
||||
|
||||
def get_chain_of_previous_input_output_pairs(
|
||||
self, previous_response_id: str
|
||||
) -> List[Tuple[ResponseInputParam, ResponsesAPIResponse]]:
|
||||
response_api_inputs: List[Tuple[ResponseInputParam, ResponsesAPIResponse]] = []
|
||||
current_previous_response_id = previous_response_id
|
||||
|
||||
count_session_elements = 0
|
||||
while current_previous_response_id:
|
||||
if count_session_elements > MAX_PREV_SESSION_INPUTS:
|
||||
break
|
||||
session_element = RESPONSES_API_PREVIOUS_RESPONSES_CACHE.get_cache(
|
||||
key=current_previous_response_id
|
||||
)
|
||||
if session_element:
|
||||
response_api_inputs.append(
|
||||
(session_element.get("input"), session_element.get("output"))
|
||||
)
|
||||
current_previous_response_id = session_element.get(
|
||||
"previous_response_id"
|
||||
)
|
||||
else:
|
||||
break
|
||||
count_session_elements += 1
|
||||
return response_api_inputs
|
|
@ -0,0 +1,110 @@
|
|||
from typing import List, Optional, Union
|
||||
|
||||
import litellm
|
||||
from litellm.main import stream_chunk_builder
|
||||
from litellm.responses.litellm_completion_transformation.transformation import (
|
||||
LiteLLMCompletionResponsesConfig,
|
||||
)
|
||||
from litellm.responses.streaming_iterator import ResponsesAPIStreamingIterator
|
||||
from litellm.types.llms.openai import (
|
||||
ResponseCompletedEvent,
|
||||
ResponseInputParam,
|
||||
ResponsesAPIOptionalRequestParams,
|
||||
ResponsesAPIStreamEvents,
|
||||
ResponsesAPIStreamingResponse,
|
||||
)
|
||||
from litellm.types.utils import (
|
||||
ModelResponse,
|
||||
ModelResponseStream,
|
||||
TextCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
class LiteLLMCompletionStreamingIterator(ResponsesAPIStreamingIterator):
|
||||
"""
|
||||
Async iterator for processing streaming responses from the Responses API.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
litellm_custom_stream_wrapper: litellm.CustomStreamWrapper,
|
||||
request_input: Union[str, ResponseInputParam],
|
||||
responses_api_request: ResponsesAPIOptionalRequestParams,
|
||||
):
|
||||
self.litellm_custom_stream_wrapper: litellm.CustomStreamWrapper = (
|
||||
litellm_custom_stream_wrapper
|
||||
)
|
||||
self.request_input: Union[str, ResponseInputParam] = request_input
|
||||
self.responses_api_request: ResponsesAPIOptionalRequestParams = (
|
||||
responses_api_request
|
||||
)
|
||||
self.collected_chunks: List[ModelResponseStream] = []
|
||||
self.finished: bool = False
|
||||
|
||||
async def __anext__(
|
||||
self,
|
||||
) -> Union[ResponsesAPIStreamingResponse, ResponseCompletedEvent]:
|
||||
try:
|
||||
while True:
|
||||
if self.finished is True:
|
||||
raise StopAsyncIteration
|
||||
# Get the next chunk from the stream
|
||||
try:
|
||||
chunk = await self.litellm_custom_stream_wrapper.__anext__()
|
||||
self.collected_chunks.append(chunk)
|
||||
except StopAsyncIteration:
|
||||
self.finished = True
|
||||
response_completed_event = self._emit_response_completed_event()
|
||||
if response_completed_event:
|
||||
return response_completed_event
|
||||
else:
|
||||
raise StopAsyncIteration
|
||||
|
||||
except Exception as e:
|
||||
# Handle HTTP errors
|
||||
self.finished = True
|
||||
raise e
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(
|
||||
self,
|
||||
) -> Union[ResponsesAPIStreamingResponse, ResponseCompletedEvent]:
|
||||
try:
|
||||
while True:
|
||||
if self.finished is True:
|
||||
raise StopAsyncIteration
|
||||
# Get the next chunk from the stream
|
||||
try:
|
||||
chunk = self.litellm_custom_stream_wrapper.__next__()
|
||||
self.collected_chunks.append(chunk)
|
||||
except StopAsyncIteration:
|
||||
self.finished = True
|
||||
response_completed_event = self._emit_response_completed_event()
|
||||
if response_completed_event:
|
||||
return response_completed_event
|
||||
else:
|
||||
raise StopAsyncIteration
|
||||
|
||||
except Exception as e:
|
||||
# Handle HTTP errors
|
||||
self.finished = True
|
||||
raise e
|
||||
|
||||
def _emit_response_completed_event(self) -> Optional[ResponseCompletedEvent]:
|
||||
litellm_model_response: Optional[
|
||||
Union[ModelResponse, TextCompletionResponse]
|
||||
] = stream_chunk_builder(chunks=self.collected_chunks)
|
||||
if litellm_model_response and isinstance(litellm_model_response, ModelResponse):
|
||||
|
||||
return ResponseCompletedEvent(
|
||||
type=ResponsesAPIStreamEvents.RESPONSE_COMPLETED,
|
||||
response=LiteLLMCompletionResponsesConfig.transform_chat_completion_response_to_responses_api_response(
|
||||
request_input=self.request_input,
|
||||
chat_completion_response=litellm_model_response,
|
||||
responses_api_request=self.responses_api_request,
|
||||
),
|
||||
)
|
||||
else:
|
||||
return None
|
|
@ -0,0 +1,631 @@
|
|||
"""
|
||||
Handles transforming from Responses API -> LiteLLM completion (Chat Completion API)
|
||||
"""
|
||||
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from openai.types.responses.tool_param import FunctionToolParam
|
||||
|
||||
from litellm.caching import InMemoryCache
|
||||
from litellm.responses.litellm_completion_transformation.session_handler import (
|
||||
ResponsesAPISessionElement,
|
||||
SessionHandler,
|
||||
)
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
ChatCompletionResponseMessage,
|
||||
ChatCompletionSystemMessage,
|
||||
ChatCompletionToolCallChunk,
|
||||
ChatCompletionToolCallFunctionChunk,
|
||||
ChatCompletionToolMessage,
|
||||
ChatCompletionToolParam,
|
||||
ChatCompletionToolParamFunctionChunk,
|
||||
ChatCompletionUserMessage,
|
||||
GenericChatCompletionMessage,
|
||||
Reasoning,
|
||||
ResponseAPIUsage,
|
||||
ResponseInputParam,
|
||||
ResponsesAPIOptionalRequestParams,
|
||||
ResponsesAPIResponse,
|
||||
ResponseTextConfig,
|
||||
)
|
||||
from litellm.types.responses.main import (
|
||||
GenericResponseOutputItem,
|
||||
GenericResponseOutputItemContentAnnotation,
|
||||
OutputFunctionToolCall,
|
||||
OutputText,
|
||||
)
|
||||
from litellm.types.utils import (
|
||||
ChatCompletionAnnotation,
|
||||
ChatCompletionMessageToolCall,
|
||||
Choices,
|
||||
Function,
|
||||
Message,
|
||||
ModelResponse,
|
||||
Usage,
|
||||
)
|
||||
|
||||
########### Initialize Classes used for Responses API ###########
|
||||
TOOL_CALLS_CACHE = InMemoryCache()
|
||||
RESPONSES_API_SESSION_HANDLER = SessionHandler()
|
||||
########### End of Initialize Classes used for Responses API ###########
|
||||
|
||||
|
||||
class LiteLLMCompletionResponsesConfig:
|
||||
|
||||
@staticmethod
|
||||
def transform_responses_api_request_to_chat_completion_request(
|
||||
model: str,
|
||||
input: Union[str, ResponseInputParam],
|
||||
responses_api_request: ResponsesAPIOptionalRequestParams,
|
||||
custom_llm_provider: Optional[str] = None,
|
||||
stream: Optional[bool] = None,
|
||||
**kwargs,
|
||||
) -> dict:
|
||||
"""
|
||||
Transform a Responses API request into a Chat Completion request
|
||||
"""
|
||||
litellm_completion_request: dict = {
|
||||
"messages": LiteLLMCompletionResponsesConfig.transform_responses_api_input_to_messages(
|
||||
input=input,
|
||||
responses_api_request=responses_api_request,
|
||||
previous_response_id=responses_api_request.get("previous_response_id"),
|
||||
),
|
||||
"model": model,
|
||||
"tool_choice": responses_api_request.get("tool_choice"),
|
||||
"tools": LiteLLMCompletionResponsesConfig.transform_responses_api_tools_to_chat_completion_tools(
|
||||
responses_api_request.get("tools") or [] # type: ignore
|
||||
),
|
||||
"top_p": responses_api_request.get("top_p"),
|
||||
"user": responses_api_request.get("user"),
|
||||
"temperature": responses_api_request.get("temperature"),
|
||||
"parallel_tool_calls": responses_api_request.get("parallel_tool_calls"),
|
||||
"max_tokens": responses_api_request.get("max_output_tokens"),
|
||||
"stream": stream,
|
||||
"metadata": kwargs.get("metadata"),
|
||||
"service_tier": kwargs.get("service_tier"),
|
||||
# litellm specific params
|
||||
"custom_llm_provider": custom_llm_provider,
|
||||
}
|
||||
|
||||
# only pass non-None values
|
||||
litellm_completion_request = {
|
||||
k: v for k, v in litellm_completion_request.items() if v is not None
|
||||
}
|
||||
|
||||
return litellm_completion_request
|
||||
|
||||
@staticmethod
|
||||
def transform_responses_api_input_to_messages(
|
||||
input: Union[str, ResponseInputParam],
|
||||
responses_api_request: ResponsesAPIOptionalRequestParams,
|
||||
previous_response_id: Optional[str] = None,
|
||||
) -> List[
|
||||
Union[
|
||||
AllMessageValues,
|
||||
GenericChatCompletionMessage,
|
||||
ChatCompletionMessageToolCall,
|
||||
ChatCompletionResponseMessage,
|
||||
]
|
||||
]:
|
||||
"""
|
||||
Transform a Responses API input into a list of messages
|
||||
"""
|
||||
messages: List[
|
||||
Union[
|
||||
AllMessageValues,
|
||||
GenericChatCompletionMessage,
|
||||
ChatCompletionMessageToolCall,
|
||||
ChatCompletionResponseMessage,
|
||||
]
|
||||
] = []
|
||||
if responses_api_request.get("instructions"):
|
||||
messages.append(
|
||||
LiteLLMCompletionResponsesConfig.transform_instructions_to_system_message(
|
||||
responses_api_request.get("instructions")
|
||||
)
|
||||
)
|
||||
|
||||
if previous_response_id:
|
||||
previous_response_pairs = (
|
||||
RESPONSES_API_SESSION_HANDLER.get_chain_of_previous_input_output_pairs(
|
||||
previous_response_id=previous_response_id
|
||||
)
|
||||
)
|
||||
if previous_response_pairs:
|
||||
for previous_response_pair in previous_response_pairs:
|
||||
chat_completion_input_messages = LiteLLMCompletionResponsesConfig._transform_response_input_param_to_chat_completion_message(
|
||||
input=previous_response_pair[0],
|
||||
)
|
||||
chat_completion_output_messages = LiteLLMCompletionResponsesConfig._transform_responses_api_outputs_to_chat_completion_messages(
|
||||
responses_api_output=previous_response_pair[1],
|
||||
)
|
||||
|
||||
messages.extend(chat_completion_input_messages)
|
||||
messages.extend(chat_completion_output_messages)
|
||||
|
||||
messages.extend(
|
||||
LiteLLMCompletionResponsesConfig._transform_response_input_param_to_chat_completion_message(
|
||||
input=input,
|
||||
)
|
||||
)
|
||||
|
||||
return messages
|
||||
|
||||
@staticmethod
|
||||
def _transform_response_input_param_to_chat_completion_message(
|
||||
input: Union[str, ResponseInputParam],
|
||||
) -> List[
|
||||
Union[
|
||||
AllMessageValues,
|
||||
GenericChatCompletionMessage,
|
||||
ChatCompletionMessageToolCall,
|
||||
ChatCompletionResponseMessage,
|
||||
]
|
||||
]:
|
||||
"""
|
||||
Transform a ResponseInputParam into a Chat Completion message
|
||||
"""
|
||||
messages: List[
|
||||
Union[
|
||||
AllMessageValues,
|
||||
GenericChatCompletionMessage,
|
||||
ChatCompletionMessageToolCall,
|
||||
ChatCompletionResponseMessage,
|
||||
]
|
||||
] = []
|
||||
tool_call_output_messages: List[
|
||||
Union[
|
||||
AllMessageValues,
|
||||
GenericChatCompletionMessage,
|
||||
ChatCompletionMessageToolCall,
|
||||
ChatCompletionResponseMessage,
|
||||
]
|
||||
] = []
|
||||
|
||||
if isinstance(input, str):
|
||||
messages.append(ChatCompletionUserMessage(role="user", content=input))
|
||||
elif isinstance(input, list):
|
||||
for _input in input:
|
||||
chat_completion_messages = LiteLLMCompletionResponsesConfig._transform_responses_api_input_item_to_chat_completion_message(
|
||||
input_item=_input
|
||||
)
|
||||
if LiteLLMCompletionResponsesConfig._is_input_item_tool_call_output(
|
||||
input_item=_input
|
||||
):
|
||||
tool_call_output_messages.extend(chat_completion_messages)
|
||||
else:
|
||||
messages.extend(chat_completion_messages)
|
||||
|
||||
messages.extend(tool_call_output_messages)
|
||||
return messages
|
||||
|
||||
@staticmethod
|
||||
def _ensure_tool_call_output_has_corresponding_tool_call(
|
||||
messages: List[Union[AllMessageValues, GenericChatCompletionMessage]],
|
||||
) -> bool:
|
||||
"""
|
||||
If any tool call output is present, ensure there is a corresponding tool call/tool_use block
|
||||
"""
|
||||
for message in messages:
|
||||
if message.get("role") == "tool":
|
||||
return True
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def _transform_responses_api_input_item_to_chat_completion_message(
|
||||
input_item: Any,
|
||||
) -> List[
|
||||
Union[
|
||||
AllMessageValues,
|
||||
GenericChatCompletionMessage,
|
||||
ChatCompletionResponseMessage,
|
||||
]
|
||||
]:
|
||||
"""
|
||||
Transform a Responses API input item into a Chat Completion message
|
||||
|
||||
- EasyInputMessageParam
|
||||
- Message
|
||||
- ResponseOutputMessageParam
|
||||
- ResponseFileSearchToolCallParam
|
||||
- ResponseComputerToolCallParam
|
||||
- ComputerCallOutput
|
||||
- ResponseFunctionWebSearchParam
|
||||
- ResponseFunctionToolCallParam
|
||||
- FunctionCallOutput
|
||||
- ResponseReasoningItemParam
|
||||
- ItemReference
|
||||
"""
|
||||
if LiteLLMCompletionResponsesConfig._is_input_item_tool_call_output(input_item):
|
||||
# handle executed tool call results
|
||||
return LiteLLMCompletionResponsesConfig._transform_responses_api_tool_call_output_to_chat_completion_message(
|
||||
tool_call_output=input_item
|
||||
)
|
||||
else:
|
||||
return [
|
||||
GenericChatCompletionMessage(
|
||||
role=input_item.get("role") or "user",
|
||||
content=LiteLLMCompletionResponsesConfig._transform_responses_api_content_to_chat_completion_content(
|
||||
input_item.get("content")
|
||||
),
|
||||
)
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def _is_input_item_tool_call_output(input_item: Any) -> bool:
|
||||
"""
|
||||
Check if the input item is a tool call output
|
||||
"""
|
||||
return input_item.get("type") in [
|
||||
"function_call_output",
|
||||
"web_search_call",
|
||||
"computer_call_output",
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def _transform_responses_api_tool_call_output_to_chat_completion_message(
|
||||
tool_call_output: Dict[str, Any],
|
||||
) -> List[
|
||||
Union[
|
||||
AllMessageValues,
|
||||
GenericChatCompletionMessage,
|
||||
ChatCompletionResponseMessage,
|
||||
]
|
||||
]:
|
||||
"""
|
||||
ChatCompletionToolMessage is used to indicate the output from a tool call
|
||||
"""
|
||||
tool_output_message = ChatCompletionToolMessage(
|
||||
role="tool",
|
||||
content=tool_call_output.get("output") or "",
|
||||
tool_call_id=tool_call_output.get("call_id") or "",
|
||||
)
|
||||
|
||||
_tool_use_definition = TOOL_CALLS_CACHE.get_cache(
|
||||
key=tool_call_output.get("call_id") or "",
|
||||
)
|
||||
if _tool_use_definition:
|
||||
"""
|
||||
Append the tool use definition to the list of messages
|
||||
|
||||
|
||||
Providers like Anthropic require the tool use definition to be included with the tool output
|
||||
|
||||
- Input:
|
||||
{'function':
|
||||
arguments:'{"command": ["echo","<html>\\n<head>\\n <title>Hello</title>\\n</head>\\n<body>\\n <h1>Hi</h1>\\n</body>\\n</html>",">","index.html"]}',
|
||||
name='shell',
|
||||
'id': 'toolu_018KFWsEySHjdKZPdUzXpymJ',
|
||||
'type': 'function'
|
||||
}
|
||||
- Output:
|
||||
{
|
||||
"id": "toolu_018KFWsEySHjdKZPdUzXpymJ",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"arguments": "{\"latitude\":48.8566,\"longitude\":2.3522}"
|
||||
}
|
||||
}
|
||||
|
||||
"""
|
||||
function: dict = _tool_use_definition.get("function") or {}
|
||||
tool_call_chunk = ChatCompletionToolCallChunk(
|
||||
id=_tool_use_definition.get("id") or "",
|
||||
type=_tool_use_definition.get("type") or "function",
|
||||
function=ChatCompletionToolCallFunctionChunk(
|
||||
name=function.get("name") or "",
|
||||
arguments=function.get("arguments") or "",
|
||||
),
|
||||
index=0,
|
||||
)
|
||||
chat_completion_response_message = ChatCompletionResponseMessage(
|
||||
tool_calls=[tool_call_chunk],
|
||||
role="assistant",
|
||||
)
|
||||
return [chat_completion_response_message, tool_output_message]
|
||||
|
||||
return [tool_output_message]
|
||||
|
||||
@staticmethod
|
||||
def _transform_responses_api_content_to_chat_completion_content(
|
||||
content: Any,
|
||||
) -> Union[str, List[Union[str, Dict[str, Any]]]]:
|
||||
"""
|
||||
Transform a Responses API content into a Chat Completion content
|
||||
"""
|
||||
|
||||
if isinstance(content, str):
|
||||
return content
|
||||
elif isinstance(content, list):
|
||||
content_list: List[Union[str, Dict[str, Any]]] = []
|
||||
for item in content:
|
||||
if isinstance(item, str):
|
||||
content_list.append(item)
|
||||
elif isinstance(item, dict):
|
||||
content_list.append(
|
||||
{
|
||||
"type": LiteLLMCompletionResponsesConfig._get_chat_completion_request_content_type(
|
||||
item.get("type") or "text"
|
||||
),
|
||||
"text": item.get("text"),
|
||||
}
|
||||
)
|
||||
return content_list
|
||||
else:
|
||||
raise ValueError(f"Invalid content type: {type(content)}")
|
||||
|
||||
@staticmethod
|
||||
def _get_chat_completion_request_content_type(content_type: str) -> str:
|
||||
"""
|
||||
Get the Chat Completion request content type
|
||||
"""
|
||||
# Responses API content has `input_` prefix, if it exists, remove it
|
||||
if content_type.startswith("input_"):
|
||||
return content_type[len("input_") :]
|
||||
else:
|
||||
return content_type
|
||||
|
||||
@staticmethod
|
||||
def transform_instructions_to_system_message(
|
||||
instructions: Optional[str],
|
||||
) -> ChatCompletionSystemMessage:
|
||||
"""
|
||||
Transform a Instructions into a system message
|
||||
"""
|
||||
return ChatCompletionSystemMessage(role="system", content=instructions or "")
|
||||
|
||||
@staticmethod
|
||||
def transform_responses_api_tools_to_chat_completion_tools(
|
||||
tools: Optional[List[FunctionToolParam]],
|
||||
) -> List[ChatCompletionToolParam]:
|
||||
"""
|
||||
Transform a Responses API tools into a Chat Completion tools
|
||||
"""
|
||||
if tools is None:
|
||||
return []
|
||||
chat_completion_tools: List[ChatCompletionToolParam] = []
|
||||
for tool in tools:
|
||||
chat_completion_tools.append(
|
||||
ChatCompletionToolParam(
|
||||
type="function",
|
||||
function=ChatCompletionToolParamFunctionChunk(
|
||||
name=tool["name"],
|
||||
description=tool.get("description") or "",
|
||||
parameters=tool.get("parameters", {}),
|
||||
strict=tool.get("strict", False),
|
||||
),
|
||||
)
|
||||
)
|
||||
return chat_completion_tools
|
||||
|
||||
@staticmethod
|
||||
def transform_chat_completion_tools_to_responses_tools(
|
||||
chat_completion_response: ModelResponse,
|
||||
) -> List[OutputFunctionToolCall]:
|
||||
"""
|
||||
Transform a Chat Completion tools into a Responses API tools
|
||||
"""
|
||||
all_chat_completion_tools: List[ChatCompletionMessageToolCall] = []
|
||||
for choice in chat_completion_response.choices:
|
||||
if isinstance(choice, Choices):
|
||||
if choice.message.tool_calls:
|
||||
all_chat_completion_tools.extend(choice.message.tool_calls)
|
||||
for tool_call in choice.message.tool_calls:
|
||||
TOOL_CALLS_CACHE.set_cache(
|
||||
key=tool_call.id,
|
||||
value=tool_call,
|
||||
)
|
||||
|
||||
responses_tools: List[OutputFunctionToolCall] = []
|
||||
for tool in all_chat_completion_tools:
|
||||
if tool.type == "function":
|
||||
function_definition = tool.function
|
||||
responses_tools.append(
|
||||
OutputFunctionToolCall(
|
||||
name=function_definition.name or "",
|
||||
arguments=function_definition.get("arguments") or "",
|
||||
call_id=tool.id or "",
|
||||
id=tool.id or "",
|
||||
type="function_call", # critical this is "function_call" to work with tools like openai codex
|
||||
status=function_definition.get("status") or "completed",
|
||||
)
|
||||
)
|
||||
return responses_tools
|
||||
|
||||
@staticmethod
|
||||
def transform_chat_completion_response_to_responses_api_response(
|
||||
request_input: Union[str, ResponseInputParam],
|
||||
responses_api_request: ResponsesAPIOptionalRequestParams,
|
||||
chat_completion_response: ModelResponse,
|
||||
) -> ResponsesAPIResponse:
|
||||
"""
|
||||
Transform a Chat Completion response into a Responses API response
|
||||
"""
|
||||
responses_api_response: ResponsesAPIResponse = ResponsesAPIResponse(
|
||||
id=chat_completion_response.id,
|
||||
created_at=chat_completion_response.created,
|
||||
model=chat_completion_response.model,
|
||||
object=chat_completion_response.object,
|
||||
error=getattr(chat_completion_response, "error", None),
|
||||
incomplete_details=getattr(
|
||||
chat_completion_response, "incomplete_details", None
|
||||
),
|
||||
instructions=getattr(chat_completion_response, "instructions", None),
|
||||
metadata=getattr(chat_completion_response, "metadata", {}),
|
||||
output=LiteLLMCompletionResponsesConfig._transform_chat_completion_choices_to_responses_output(
|
||||
chat_completion_response=chat_completion_response,
|
||||
choices=getattr(chat_completion_response, "choices", []),
|
||||
),
|
||||
parallel_tool_calls=getattr(
|
||||
chat_completion_response, "parallel_tool_calls", False
|
||||
),
|
||||
temperature=getattr(chat_completion_response, "temperature", 0),
|
||||
tool_choice=getattr(chat_completion_response, "tool_choice", "auto"),
|
||||
tools=getattr(chat_completion_response, "tools", []),
|
||||
top_p=getattr(chat_completion_response, "top_p", None),
|
||||
max_output_tokens=getattr(
|
||||
chat_completion_response, "max_output_tokens", None
|
||||
),
|
||||
previous_response_id=getattr(
|
||||
chat_completion_response, "previous_response_id", None
|
||||
),
|
||||
reasoning=Reasoning(),
|
||||
status=getattr(chat_completion_response, "status", "completed"),
|
||||
text=ResponseTextConfig(),
|
||||
truncation=getattr(chat_completion_response, "truncation", None),
|
||||
usage=LiteLLMCompletionResponsesConfig._transform_chat_completion_usage_to_responses_usage(
|
||||
chat_completion_response=chat_completion_response
|
||||
),
|
||||
user=getattr(chat_completion_response, "user", None),
|
||||
)
|
||||
|
||||
RESPONSES_API_SESSION_HANDLER.add_completed_response_to_cache(
|
||||
response_id=responses_api_response.id,
|
||||
session_element=ResponsesAPISessionElement(
|
||||
input=request_input,
|
||||
output=responses_api_response,
|
||||
response_id=responses_api_response.id,
|
||||
previous_response_id=responses_api_request.get("previous_response_id"),
|
||||
),
|
||||
)
|
||||
return responses_api_response
|
||||
|
||||
@staticmethod
|
||||
def _transform_chat_completion_choices_to_responses_output(
|
||||
chat_completion_response: ModelResponse,
|
||||
choices: List[Choices],
|
||||
) -> List[Union[GenericResponseOutputItem, OutputFunctionToolCall]]:
|
||||
responses_output: List[
|
||||
Union[GenericResponseOutputItem, OutputFunctionToolCall]
|
||||
] = []
|
||||
for choice in choices:
|
||||
responses_output.append(
|
||||
GenericResponseOutputItem(
|
||||
type="message",
|
||||
id=chat_completion_response.id,
|
||||
status=choice.finish_reason,
|
||||
role=choice.message.role,
|
||||
content=[
|
||||
LiteLLMCompletionResponsesConfig._transform_chat_message_to_response_output_text(
|
||||
choice.message
|
||||
)
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
tool_calls = LiteLLMCompletionResponsesConfig.transform_chat_completion_tools_to_responses_tools(
|
||||
chat_completion_response=chat_completion_response
|
||||
)
|
||||
responses_output.extend(tool_calls)
|
||||
return responses_output
|
||||
|
||||
@staticmethod
|
||||
def _transform_responses_api_outputs_to_chat_completion_messages(
|
||||
responses_api_output: ResponsesAPIResponse,
|
||||
) -> List[
|
||||
Union[
|
||||
AllMessageValues,
|
||||
GenericChatCompletionMessage,
|
||||
ChatCompletionMessageToolCall,
|
||||
]
|
||||
]:
|
||||
messages: List[
|
||||
Union[
|
||||
AllMessageValues,
|
||||
GenericChatCompletionMessage,
|
||||
ChatCompletionMessageToolCall,
|
||||
]
|
||||
] = []
|
||||
output_items = responses_api_output.output
|
||||
for _output_item in output_items:
|
||||
output_item: dict = dict(_output_item)
|
||||
if output_item.get("type") == "function_call":
|
||||
# handle function call output
|
||||
messages.append(
|
||||
LiteLLMCompletionResponsesConfig._transform_responses_output_tool_call_to_chat_completion_output_tool_call(
|
||||
tool_call=output_item
|
||||
)
|
||||
)
|
||||
else:
|
||||
# transform as generic ResponseOutputItem
|
||||
messages.append(
|
||||
GenericChatCompletionMessage(
|
||||
role=str(output_item.get("role")) or "user",
|
||||
content=LiteLLMCompletionResponsesConfig._transform_responses_api_content_to_chat_completion_content(
|
||||
output_item.get("content")
|
||||
),
|
||||
)
|
||||
)
|
||||
return messages
|
||||
|
||||
@staticmethod
|
||||
def _transform_responses_output_tool_call_to_chat_completion_output_tool_call(
|
||||
tool_call: dict,
|
||||
) -> ChatCompletionMessageToolCall:
|
||||
return ChatCompletionMessageToolCall(
|
||||
id=tool_call.get("id") or "",
|
||||
type="function",
|
||||
function=Function(
|
||||
name=tool_call.get("name") or "",
|
||||
arguments=tool_call.get("arguments") or "",
|
||||
),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _transform_chat_message_to_response_output_text(
|
||||
message: Message,
|
||||
) -> OutputText:
|
||||
return OutputText(
|
||||
type="output_text",
|
||||
text=message.content,
|
||||
annotations=LiteLLMCompletionResponsesConfig._transform_chat_completion_annotations_to_response_output_annotations(
|
||||
annotations=getattr(message, "annotations", None)
|
||||
),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _transform_chat_completion_annotations_to_response_output_annotations(
|
||||
annotations: Optional[List[ChatCompletionAnnotation]],
|
||||
) -> List[GenericResponseOutputItemContentAnnotation]:
|
||||
response_output_annotations: List[
|
||||
GenericResponseOutputItemContentAnnotation
|
||||
] = []
|
||||
|
||||
if annotations is None:
|
||||
return response_output_annotations
|
||||
|
||||
for annotation in annotations:
|
||||
annotation_type = annotation.get("type")
|
||||
if annotation_type == "url_citation" and "url_citation" in annotation:
|
||||
url_citation = annotation["url_citation"]
|
||||
response_output_annotations.append(
|
||||
GenericResponseOutputItemContentAnnotation(
|
||||
type=annotation_type,
|
||||
start_index=url_citation.get("start_index"),
|
||||
end_index=url_citation.get("end_index"),
|
||||
url=url_citation.get("url"),
|
||||
title=url_citation.get("title"),
|
||||
)
|
||||
)
|
||||
# Handle other annotation types here
|
||||
|
||||
return response_output_annotations
|
||||
|
||||
@staticmethod
|
||||
def _transform_chat_completion_usage_to_responses_usage(
|
||||
chat_completion_response: ModelResponse,
|
||||
) -> ResponseAPIUsage:
|
||||
usage: Optional[Usage] = getattr(chat_completion_response, "usage", None)
|
||||
if usage is None:
|
||||
return ResponseAPIUsage(
|
||||
input_tokens=0,
|
||||
output_tokens=0,
|
||||
total_tokens=0,
|
||||
)
|
||||
return ResponseAPIUsage(
|
||||
input_tokens=usage.prompt_tokens,
|
||||
output_tokens=usage.completion_tokens,
|
||||
total_tokens=usage.total_tokens,
|
||||
)
|
|
@ -10,6 +10,9 @@ from litellm.constants import request_timeout
|
|||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||||
from litellm.llms.base_llm.responses.transformation import BaseResponsesAPIConfig
|
||||
from litellm.llms.custom_httpx.llm_http_handler import BaseLLMHTTPHandler
|
||||
from litellm.responses.litellm_completion_transformation.handler import (
|
||||
LiteLLMCompletionTransformationHandler,
|
||||
)
|
||||
from litellm.responses.utils import ResponsesAPIRequestUtils
|
||||
from litellm.types.llms.openai import (
|
||||
Reasoning,
|
||||
|
@ -29,6 +32,7 @@ from .streaming_iterator import BaseResponsesAPIStreamingIterator
|
|||
####### ENVIRONMENT VARIABLES ###################
|
||||
# Initialize any necessary instances or variables here
|
||||
base_llm_http_handler = BaseLLMHTTPHandler()
|
||||
litellm_completion_transformation_handler = LiteLLMCompletionTransformationHandler()
|
||||
#################################################
|
||||
|
||||
|
||||
|
@ -178,19 +182,12 @@ def responses(
|
|||
)
|
||||
|
||||
# get provider config
|
||||
responses_api_provider_config: Optional[
|
||||
BaseResponsesAPIConfig
|
||||
] = ProviderConfigManager.get_provider_responses_api_config(
|
||||
model=model,
|
||||
provider=litellm.LlmProviders(custom_llm_provider),
|
||||
)
|
||||
|
||||
if responses_api_provider_config is None:
|
||||
raise litellm.BadRequestError(
|
||||
responses_api_provider_config: Optional[BaseResponsesAPIConfig] = (
|
||||
ProviderConfigManager.get_provider_responses_api_config(
|
||||
model=model,
|
||||
llm_provider=custom_llm_provider,
|
||||
message=f"Responses API not available for custom_llm_provider={custom_llm_provider}, model: {model}",
|
||||
provider=litellm.LlmProviders(custom_llm_provider),
|
||||
)
|
||||
)
|
||||
|
||||
local_vars.update(kwargs)
|
||||
# Get ResponsesAPIOptionalRequestParams with only valid parameters
|
||||
|
@ -200,6 +197,17 @@ def responses(
|
|||
)
|
||||
)
|
||||
|
||||
if responses_api_provider_config is None:
|
||||
return litellm_completion_transformation_handler.response_api_handler(
|
||||
model=model,
|
||||
input=input,
|
||||
responses_api_request=response_api_optional_params,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
_is_async=_is_async,
|
||||
stream=stream,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# Get optional parameters for the responses API
|
||||
responses_api_request_params: Dict = (
|
||||
ResponsesAPIRequestUtils.get_optional_params_responses_api(
|
||||
|
|
15
litellm/types/llms/base.py
Normal file
15
litellm/types/llms/base.py
Normal file
|
@ -0,0 +1,15 @@
|
|||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class BaseLiteLLMOpenAIResponseObject(BaseModel):
|
||||
def __getitem__(self, key):
|
||||
return self.__dict__[key]
|
||||
|
||||
def get(self, key, default=None):
|
||||
return self.__dict__.get(key, default)
|
||||
|
||||
def __contains__(self, key):
|
||||
return key in self.__dict__
|
||||
|
||||
def items(self):
|
||||
return self.__dict__.items()
|
|
@ -49,9 +49,16 @@ from openai.types.responses.response_create_params import (
|
|||
ToolChoice,
|
||||
ToolParam,
|
||||
)
|
||||
from openai.types.responses.response_function_tool_call import ResponseFunctionToolCall
|
||||
from pydantic import BaseModel, Discriminator, Field, PrivateAttr
|
||||
from typing_extensions import Annotated, Dict, Required, TypedDict, override
|
||||
|
||||
from litellm.types.llms.base import BaseLiteLLMOpenAIResponseObject
|
||||
from litellm.types.responses.main import (
|
||||
GenericResponseOutputItem,
|
||||
OutputFunctionToolCall,
|
||||
)
|
||||
|
||||
FileContent = Union[IO[bytes], bytes, PathLike]
|
||||
|
||||
FileTypes = Union[
|
||||
|
@ -678,6 +685,11 @@ class ChatCompletionDeveloperMessage(OpenAIChatCompletionDeveloperMessage, total
|
|||
cache_control: ChatCompletionCachedContent
|
||||
|
||||
|
||||
class GenericChatCompletionMessage(TypedDict, total=False):
|
||||
role: Required[str]
|
||||
content: Required[Union[str, List]]
|
||||
|
||||
|
||||
ValidUserMessageContentTypes = [
|
||||
"text",
|
||||
"image_url",
|
||||
|
@ -803,12 +815,12 @@ class OpenAIChatCompletionChunk(ChatCompletionChunk):
|
|||
|
||||
class Hyperparameters(BaseModel):
|
||||
batch_size: Optional[Union[str, int]] = None # "Number of examples in each batch."
|
||||
learning_rate_multiplier: Optional[
|
||||
Union[str, float]
|
||||
] = None # Scaling factor for the learning rate
|
||||
n_epochs: Optional[
|
||||
Union[str, int]
|
||||
] = None # "The number of epochs to train the model for"
|
||||
learning_rate_multiplier: Optional[Union[str, float]] = (
|
||||
None # Scaling factor for the learning rate
|
||||
)
|
||||
n_epochs: Optional[Union[str, int]] = (
|
||||
None # "The number of epochs to train the model for"
|
||||
)
|
||||
|
||||
|
||||
class FineTuningJobCreate(BaseModel):
|
||||
|
@ -835,18 +847,18 @@ class FineTuningJobCreate(BaseModel):
|
|||
|
||||
model: str # "The name of the model to fine-tune."
|
||||
training_file: str # "The ID of an uploaded file that contains training data."
|
||||
hyperparameters: Optional[
|
||||
Hyperparameters
|
||||
] = None # "The hyperparameters used for the fine-tuning job."
|
||||
suffix: Optional[
|
||||
str
|
||||
] = None # "A string of up to 18 characters that will be added to your fine-tuned model name."
|
||||
validation_file: Optional[
|
||||
str
|
||||
] = None # "The ID of an uploaded file that contains validation data."
|
||||
integrations: Optional[
|
||||
List[str]
|
||||
] = None # "A list of integrations to enable for your fine-tuning job."
|
||||
hyperparameters: Optional[Hyperparameters] = (
|
||||
None # "The hyperparameters used for the fine-tuning job."
|
||||
)
|
||||
suffix: Optional[str] = (
|
||||
None # "A string of up to 18 characters that will be added to your fine-tuned model name."
|
||||
)
|
||||
validation_file: Optional[str] = (
|
||||
None # "The ID of an uploaded file that contains validation data."
|
||||
)
|
||||
integrations: Optional[List[str]] = (
|
||||
None # "A list of integrations to enable for your fine-tuning job."
|
||||
)
|
||||
seed: Optional[int] = None # "The seed controls the reproducibility of the job."
|
||||
|
||||
|
||||
|
@ -887,7 +899,7 @@ class ResponsesAPIOptionalRequestParams(TypedDict, total=False):
|
|||
temperature: Optional[float]
|
||||
text: Optional[ResponseTextConfigParam]
|
||||
tool_choice: Optional[ToolChoice]
|
||||
tools: Optional[Iterable[ToolParam]]
|
||||
tools: Optional[List[ToolParam]]
|
||||
top_p: Optional[float]
|
||||
truncation: Optional[Literal["auto", "disabled"]]
|
||||
user: Optional[str]
|
||||
|
@ -900,20 +912,6 @@ class ResponsesAPIRequestParams(ResponsesAPIOptionalRequestParams, total=False):
|
|||
model: str
|
||||
|
||||
|
||||
class BaseLiteLLMOpenAIResponseObject(BaseModel):
|
||||
def __getitem__(self, key):
|
||||
return self.__dict__[key]
|
||||
|
||||
def get(self, key, default=None):
|
||||
return self.__dict__.get(key, default)
|
||||
|
||||
def __contains__(self, key):
|
||||
return key in self.__dict__
|
||||
|
||||
def items(self):
|
||||
return self.__dict__.items()
|
||||
|
||||
|
||||
class OutputTokensDetails(BaseLiteLLMOpenAIResponseObject):
|
||||
reasoning_tokens: Optional[int] = None
|
||||
|
||||
|
@ -958,11 +956,14 @@ class ResponsesAPIResponse(BaseLiteLLMOpenAIResponseObject):
|
|||
metadata: Optional[Dict]
|
||||
model: Optional[str]
|
||||
object: Optional[str]
|
||||
output: List[ResponseOutputItem]
|
||||
output: Union[
|
||||
List[ResponseOutputItem],
|
||||
List[Union[GenericResponseOutputItem, OutputFunctionToolCall]],
|
||||
]
|
||||
parallel_tool_calls: bool
|
||||
temperature: Optional[float]
|
||||
tool_choice: ToolChoice
|
||||
tools: List[Tool]
|
||||
tools: Union[List[Tool], List[ResponseFunctionToolCall]]
|
||||
top_p: Optional[float]
|
||||
max_output_tokens: Optional[int]
|
||||
previous_response_id: Optional[str]
|
||||
|
|
48
litellm/types/responses/main.py
Normal file
48
litellm/types/responses/main.py
Normal file
|
@ -0,0 +1,48 @@
|
|||
from typing import Literal
|
||||
|
||||
from typing_extensions import Any, List, Optional, TypedDict
|
||||
|
||||
from litellm.types.llms.base import BaseLiteLLMOpenAIResponseObject
|
||||
|
||||
|
||||
class GenericResponseOutputItemContentAnnotation(BaseLiteLLMOpenAIResponseObject):
|
||||
"""Annotation for content in a message"""
|
||||
|
||||
type: Optional[str]
|
||||
start_index: Optional[int]
|
||||
end_index: Optional[int]
|
||||
url: Optional[str]
|
||||
title: Optional[str]
|
||||
pass
|
||||
|
||||
|
||||
class OutputText(BaseLiteLLMOpenAIResponseObject):
|
||||
"""Text output content from an assistant message"""
|
||||
|
||||
type: Optional[str] # "output_text"
|
||||
text: Optional[str]
|
||||
annotations: Optional[List[GenericResponseOutputItemContentAnnotation]]
|
||||
|
||||
|
||||
class OutputFunctionToolCall(BaseLiteLLMOpenAIResponseObject):
|
||||
"""A tool call to run a function"""
|
||||
|
||||
arguments: Optional[str]
|
||||
call_id: Optional[str]
|
||||
name: Optional[str]
|
||||
type: Optional[str] # "function_call"
|
||||
id: Optional[str]
|
||||
status: Literal["in_progress", "completed", "incomplete"]
|
||||
|
||||
|
||||
class GenericResponseOutputItem(BaseLiteLLMOpenAIResponseObject):
|
||||
"""
|
||||
Generic response API output item
|
||||
|
||||
"""
|
||||
|
||||
type: str # "message"
|
||||
id: str
|
||||
status: str # "completed", "in_progress", etc.
|
||||
role: str # "assistant", "user", etc.
|
||||
content: List[OutputText]
|
Loading…
Add table
Add a link
Reference in a new issue