mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
add hf embedding models
This commit is contained in:
parent
f04d50d119
commit
3fbad7dfa7
2 changed files with 100 additions and 16 deletions
|
@ -1350,19 +1350,23 @@ def batch_completion_models_all_responses(*args, **kwargs):
|
|||
def embedding(
|
||||
model,
|
||||
input=[],
|
||||
api_key=None,
|
||||
api_base=None,
|
||||
# Optional params
|
||||
azure=False,
|
||||
force_timeout=60,
|
||||
litellm_call_id=None,
|
||||
litellm_logging_obj=None,
|
||||
logger_fn=None,
|
||||
caching=False,
|
||||
api_key=None,
|
||||
custom_llm_provider=None,
|
||||
):
|
||||
model, custom_llm_provider = get_llm_provider(model, custom_llm_provider)
|
||||
try:
|
||||
response = None
|
||||
logging = litellm_logging_obj
|
||||
logging.update_environment_variables(model=model, user="", optional_params={}, litellm_params={"force_timeout": force_timeout, "azure": azure, "litellm_call_id": litellm_call_id, "logger_fn": logger_fn})
|
||||
if azure == True:
|
||||
if azure == True or custom_llm_provider == "azure":
|
||||
# azure configs
|
||||
openai.api_type = get_secret("AZURE_API_TYPE") or "azure"
|
||||
openai.api_base = get_secret("AZURE_API_BASE")
|
||||
|
@ -1380,6 +1384,9 @@ def embedding(
|
|||
)
|
||||
## EMBEDDING CALL
|
||||
response = openai.Embedding.create(input=input, engine=model)
|
||||
|
||||
## LOGGING
|
||||
logging.post_call(input=input, api_key=openai.api_key, original_response=response)
|
||||
elif model in litellm.open_ai_embedding_models:
|
||||
openai.api_type = "openai"
|
||||
openai.api_base = "https://api.openai.com/v1"
|
||||
|
@ -1414,20 +1421,25 @@ def embedding(
|
|||
model_response= EmbeddingResponse()
|
||||
|
||||
)
|
||||
# elif custom_llm_provider == "huggingface":
|
||||
# response = huggingface_restapi.embedding(
|
||||
# model=model,
|
||||
# input=input,
|
||||
# encoding=encoding,
|
||||
# api_key=cohere_key,
|
||||
# logging_obj=logging,
|
||||
# model_response= EmbeddingResponse()
|
||||
# )
|
||||
elif custom_llm_provider == "huggingface":
|
||||
api_key = (
|
||||
api_key
|
||||
or litellm.huggingface_key
|
||||
or get_secret("HUGGINGFACE_API_KEY")
|
||||
or litellm.api_key
|
||||
)
|
||||
response = huggingface_restapi.embedding(
|
||||
model=model,
|
||||
input=input,
|
||||
encoding=encoding,
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
logging_obj=logging,
|
||||
model_response= EmbeddingResponse()
|
||||
)
|
||||
else:
|
||||
args = locals()
|
||||
raise ValueError(f"No valid embedding model args passed in - {args}")
|
||||
## LOGGING
|
||||
logging.post_call(input=input, api_key=openai.api_key, original_response=response)
|
||||
return response
|
||||
except Exception as e:
|
||||
## LOGGING
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue