Merge pull request #2187 from BerriAI/litellm_clickhouse_logs

[FEAT] Use Logging on clickhouse
This commit is contained in:
Ishaan Jaff 2024-02-26 08:26:02 -08:00 committed by GitHub
commit 4067d4f1e5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 260 additions and 0 deletions

View file

@ -0,0 +1,72 @@
import clickhouse_connect
import datetime as datetime
import os
client = clickhouse_connect.get_client(
host=os.getenv("CLICKHOUSE_HOST"),
port=int(os.getenv("CLICKHOUSE_PORT")),
username=os.getenv("CLICKHOUSE_USERNAME"),
password=os.getenv("CLICKHOUSE_PASSWORD"),
)
import clickhouse_connect
row1 = [
"ishaan", # request_id
"GET", # call_type
"api_key_123", # api_key
50.00, # spend
1000, # total_tokens
800, # prompt_tokens
200, # completion_tokens
datetime.datetime.now(), # startTime (replace with the actual timestamp)
datetime.datetime.now(), # endTime (replace with the actual timestamp)
"gpt-3.5", # model
"user123", # user
'{"key": "value"}', # metadata (replace with valid JSON)
"True", # cache_hit
"cache_key_123", # cache_key
"tag1,tag2", # request_tags
]
row2 = [
"jaffer", # request_id
"POST", # call_type
"api_key_456", # api_key
30.50, # spend
800, # total_tokens
600, # prompt_tokens
200, # completion_tokens
datetime.datetime.now(), # startTime (replace with the actual timestamp)
datetime.datetime.now(), # endTime (replace with the actual timestamp)
"gpt-4.0", # model
"user456", # user
'{"key": "value"}', # metadata (replace with valid JSON)
"False", # cache_hit
"cache_key_789", # cache_key
"tag3,tag4", # request_tags
]
data = [row1, row2]
resp = client.insert(
"spend_logs",
data,
column_names=[
"request_id",
"call_type",
"api_key",
"spend",
"total_tokens",
"prompt_tokens",
"completion_tokens",
"startTime",
"endTime",
"model",
"user",
"metadata",
"cache_hit",
"cache_key",
"request_tags",
],
)
print(resp)

View file

@ -0,0 +1,116 @@
# callback to make a request to an API endpoint
#### What this does ####
# On success, logs events to Promptlayer
import dotenv, os
import requests
from litellm.proxy._types import UserAPIKeyAuth
from litellm.caching import DualCache
from typing import Literal, Union
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback
#### What this does ####
# On success + failure, log events to Supabase
import dotenv, os
import requests
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback
import datetime, subprocess, sys
import litellm, uuid
from litellm._logging import print_verbose, verbose_logger
class ClickhouseLogger:
# Class variables or attributes
def __init__(self, endpoint=None, headers=None):
import clickhouse_connect
print_verbose(
f"ClickhouseLogger init, host {os.getenv('CLICKHOUSE_HOST')}, port {os.getenv('CLICKHOUSE_PORT')}, username {os.getenv('CLICKHOUSE_USERNAME')}"
)
port = os.getenv("CLICKHOUSE_PORT")
if port is not None and isinstance(port, str):
port = int(port)
client = clickhouse_connect.get_client(
host=os.getenv("CLICKHOUSE_HOST"),
port=port,
username=os.getenv("CLICKHOUSE_USERNAME"),
password=os.getenv("CLICKHOUSE_PASSWORD"),
)
self.client = client
# This is sync, because we run this in a separate thread. Running in a sepearate thread ensures it will never block an LLM API call
# Experience with s3, Langfuse shows that async logging events are complicated and can block LLM calls
def log_event(
self, kwargs, response_obj, start_time, end_time, user_id, print_verbose
):
try:
verbose_logger.debug(
f"ClickhouseLogger Logging - Enters logging function for model {kwargs}"
)
# construct payload to send custom logger
# follows the same params as langfuse.py
litellm_params = kwargs.get("litellm_params", {})
metadata = (
litellm_params.get("metadata", {}) or {}
) # if litellm_params['metadata'] == None
messages = kwargs.get("messages")
cost = kwargs.get("response_cost", 0.0)
optional_params = kwargs.get("optional_params", {})
call_type = kwargs.get("call_type", "litellm.completion")
cache_hit = kwargs.get("cache_hit", False)
usage = response_obj["usage"]
id = response_obj.get("id", str(uuid.uuid4()))
from litellm.proxy.utils import get_logging_payload
payload = get_logging_payload(
kwargs=kwargs,
response_obj=response_obj,
start_time=start_time,
end_time=end_time,
)
# Build the initial payload
# Ensure everything in the payload is converted to str
# for key, value in payload.items():
# try:
# print("key=", key, "type=", type(value))
# # payload[key] = str(value)
# except:
# # non blocking if it can't cast to a str
# pass
print_verbose(f"\nClickhouse Logger - Logging payload = {payload}")
# just get the payload items in one array and payload keys in 2nd array
values = []
keys = []
for key, value in payload.items():
keys.append(key)
values.append(value)
data = [values]
# print("logging data=", data)
# print("logging keys=", keys)
response = self.client.insert("spend_logs", data, column_names=keys)
# make request to endpoint with payload
print_verbose(
f"Clickhouse Logger - final response status = {response_status}, response text = {response_text}"
)
except Exception as e:
traceback.print_exc()
verbose_logger.debug(f"Clickhouse - {str(e)}\n{traceback.format_exc()}")
pass

View file

@ -1369,6 +1369,7 @@ def get_logging_payload(kwargs, response_obj, start_time, end_time):
"user": kwargs.get("user", ""),
"metadata": metadata,
"cache_key": cache_key,
"spend": kwargs.get("response_cost", 0),
"total_tokens": usage.get("total_tokens", 0),
"prompt_tokens": usage.get("prompt_tokens", 0),
"completion_tokens": usage.get("completion_tokens", 0),

View file

@ -0,0 +1,38 @@
import sys
import os
import io, asyncio
# import logging
# logging.basicConfig(level=logging.DEBUG)
sys.path.insert(0, os.path.abspath("../.."))
print("Modified sys.path:", sys.path)
from litellm import completion
import litellm
litellm.num_retries = 3
import time, random
import pytest
@pytest.mark.asyncio
async def test_custom_api_logging():
try:
litellm.success_callback = ["clickhouse"]
litellm.set_verbose = True
await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": f"This is a test"}],
max_tokens=10,
temperature=0.7,
user="ishaan-2",
)
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
finally:
# post, close log file and verify
# Reset stdout to the original value
print("Passed!")

View file

@ -68,6 +68,7 @@ from .integrations.custom_logger import CustomLogger
from .integrations.langfuse import LangFuseLogger
from .integrations.dynamodb import DyanmoDBLogger
from .integrations.s3 import S3Logger
from .integrations.clickhouse import ClickhouseLogger
from .integrations.litedebugger import LiteDebugger
from .proxy._types import KeyManagementSystem
from openai import OpenAIError as OriginalError
@ -124,6 +125,7 @@ langFuseLogger = None
dynamoLogger = None
s3Logger = None
genericAPILogger = None
clickHouseLogger = None
llmonitorLogger = None
aispendLogger = None
berrispendLogger = None
@ -1413,6 +1415,37 @@ class Logging:
user_id=kwargs.get("user", None),
print_verbose=print_verbose,
)
if callback == "clickhouse":
global clickHouseLogger
verbose_logger.debug("reaches clickhouse for success logging!")
kwargs = {}
for k, v in self.model_call_details.items():
if (
k != "original_response"
): # copy.deepcopy raises errors as this could be a coroutine
kwargs[k] = v
# this only logs streaming once, complete_streaming_response exists i.e when stream ends
if self.stream:
verbose_logger.debug(
f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}"
)
if complete_streaming_response is None:
break
else:
print_verbose(
"reaches clickhouse for streaming logging!"
)
result = kwargs["complete_streaming_response"]
if clickHouseLogger is None:
clickHouseLogger = ClickhouseLogger()
clickHouseLogger.log_event(
kwargs=kwargs,
response_obj=result,
start_time=start_time,
end_time=end_time,
user_id=kwargs.get("user", None),
print_verbose=print_verbose,
)
if callback == "cache" and litellm.cache is not None:
# this only logs streaming once, complete_streaming_response exists i.e when stream ends
print_verbose("success_callback: reaches cache for logging!")