Merge branch 'main' into main

This commit is contained in:
Krish Dholakia 2023-08-09 11:00:40 -07:00 committed by GitHub
commit 4278b183d0
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
18 changed files with 1000 additions and 102 deletions

BIN
.DS_Store vendored

Binary file not shown.

View file

@ -13,6 +13,9 @@ jobs:
command: |
python -m pip install --upgrade pip
python -m pip install -r requirements.txt
pip install infisical
pip install pytest
pip install openai[datalib]
# Run pytest and generate JUnit XML report
- run:

View file

@ -3,18 +3,16 @@
[![PyPI Version](https://img.shields.io/badge/stable%20version-v0.1.345-blue?color=green&link=https://pypi.org/project/litellm/0.1.1/)](https://pypi.org/project/litellm/0.1.1/)
[![CircleCI](https://dl.circleci.com/status-badge/img/gh/BerriAI/litellm/tree/main.svg?style=svg)](https://dl.circleci.com/status-badge/redirect/gh/BerriAI/litellm/tree/main)
![Downloads](https://img.shields.io/pypi/dm/litellm)
[![litellm](https://img.shields.io/badge/%20%F0%9F%9A%85%20liteLLM-OpenAI%7CAzure%7CAnthropic%7CPalm%7CCohere-blue?color=green)](https://github.com/BerriAI/litellm)
[![litellm](https://img.shields.io/badge/%20%F0%9F%9A%85%20liteLLM-OpenAI%7CAzure%7CAnthropic%7CPalm%7CCohere%7CReplicate%7CHugging%20Face-blue?color=green)](https://github.com/BerriAI/litellm)
Get Support / Join the community 👉 [![](https://dcbadge.vercel.app/api/server/wuPM9dRgDw)](https://discord.gg/wuPM9dRgDw)
a simple & light package to call OpenAI, Azure, Cohere, Anthropic API Endpoints
litellm manages:
- translating inputs to completion and embedding endpoints
- guarantees consistent output, text responses will always be available at `['choices'][0]['message']['content']`
[![](https://dcbadge.vercel.app/api/server/wuPM9dRgDw)](https://discord.gg/wuPM9dRgDw)
a light package to simplify calling OpenAI, Azure, Cohere, Anthropic, Huggingface API Endpoints. It manages:
- translating inputs to the provider's completion and embedding endpoints
- guarantees [consistent output](https://litellm.readthedocs.io/en/latest/output/), text responses will always be available at `['choices'][0]['message']['content']`
- exception mapping - common exceptions across providers are mapped to the [OpenAI exception types](https://help.openai.com/en/articles/6897213-openai-library-error-types-guidance)
# usage
Demo - https://litellm.ai/ \
Read the docs - https://litellm.readthedocs.io/en/latest/
## quick start
@ -25,11 +23,6 @@ pip install litellm
```python
from litellm import completion
## set ENV variables
# ENV variables can be set in .env file, too. Example in .env.example
os.environ["OPENAI_API_KEY"] = "openai key"
os.environ["COHERE_API_KEY"] = "cohere key"
messages = [{ "content": "Hello, how are you?","role": "user"}]
# openai call
@ -41,6 +34,9 @@ response = completion("command-nightly", messages)
# azure openai call
response = completion("chatgpt-test", messages, azure=True)
# hugging face call
response = completion(model="stabilityai/stablecode-completion-alpha-3b-4k", messages=messages, hugging_face=True)
# openrouter call
response = completion("google/palm-2-codechat-bison", messages)
```
@ -53,17 +49,23 @@ pip install litellm==0.1.345
## Streaming Queries
liteLLM supports streaming the model response back, pass `stream=True` to get a streaming iterator in response.
Streaming is supported for OpenAI, Azure, Anthropic models
```python
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for chunk in response:
print(chunk['choices'][0]['delta'])
# claude 2
result = completion('claude-2', messages, stream=True)
for chunk in result:
print(chunk['choices'][0]['delta'])
```
# hosted version
- [Grab time if you want access 👋](https://calendly.com/d/4mp-gd3-k5k/berriai-1-1-onboarding-litellm-hosted-version)
# support / talk with founders
- [Our calendar 👋](https://calendly.com/d/4mp-gd3-k5k/berriai-1-1-onboarding-litellm-hosted-version)
- [Community Discord 💭](https://discord.gg/wuPM9dRgDw)
- Our numbers 📞 +1 (770) 8783-106 / +1 (412) 618-6238
- Our emails ✉️ ishaan@berri.ai / krrish@berri.ai
# why did we build this
- **Need for simplicity**: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI, Cohere
# Support
Contact us at ishaan@berri.ai / krrish@berri.ai

View file

@ -0,0 +1,406 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ZwuaylskLxFu",
"outputId": "d684d6a3-32fe-4beb-c378-c39134bcf8cc"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Collecting litellm==0.1.363\n",
" Downloading litellm-0.1.363-py3-none-any.whl (34 kB)\n",
"Requirement already satisfied: openai<0.28.0,>=0.27.8 in /usr/local/lib/python3.10/dist-packages (from litellm==0.1.363) (0.27.8)\n",
"Requirement already satisfied: python-dotenv<2.0.0,>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from litellm==0.1.363) (1.0.0)\n",
"Requirement already satisfied: tiktoken<0.5.0,>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from litellm==0.1.363) (0.4.0)\n",
"Requirement already satisfied: requests>=2.20 in /usr/local/lib/python3.10/dist-packages (from openai<0.28.0,>=0.27.8->litellm==0.1.363) (2.31.0)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from openai<0.28.0,>=0.27.8->litellm==0.1.363) (4.65.0)\n",
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from openai<0.28.0,>=0.27.8->litellm==0.1.363) (3.8.5)\n",
"Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from tiktoken<0.5.0,>=0.4.0->litellm==0.1.363) (2022.10.31)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai<0.28.0,>=0.27.8->litellm==0.1.363) (3.2.0)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai<0.28.0,>=0.27.8->litellm==0.1.363) (3.4)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai<0.28.0,>=0.27.8->litellm==0.1.363) (1.26.16)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai<0.28.0,>=0.27.8->litellm==0.1.363) (2023.7.22)\n",
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm==0.1.363) (23.1.0)\n",
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm==0.1.363) (6.0.4)\n",
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm==0.1.363) (4.0.2)\n",
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm==0.1.363) (1.9.2)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm==0.1.363) (1.4.0)\n",
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm==0.1.363) (1.3.1)\n",
"Installing collected packages: litellm\n",
" Attempting uninstall: litellm\n",
" Found existing installation: litellm 0.1.362\n",
" Uninstalling litellm-0.1.362:\n",
" Successfully uninstalled litellm-0.1.362\n",
"Successfully installed litellm-0.1.363\n"
]
}
],
"source": [
"!pip install litellm==\"0.1.363\""
]
},
{
"cell_type": "code",
"source": [
"# @title Import litellm & Set env variables\n",
"import litellm\n",
"import os\n",
"\n",
"os.environ[\"ANTHROPIC_API_KEY\"] = \" \" #@param"
],
"metadata": {
"id": "W216G__XL19Q"
},
"execution_count": 2,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# @title Request Claude Instant-1 and Claude-2\n",
"messages = [\n",
" {\"role\": \"system\", \"content\": \"You are a helpful assistant.\"},\n",
" {\"role\": \"user\", \"content\": \"Who won the world series in 2020?\"}\n",
" ]\n",
"\n",
"result = litellm.completion('claude-instant-1', messages)\n",
"print(\"\\n\\n Result from claude-instant-1\", result)\n",
"result = litellm.completion('claude-2', messages, max_tokens=5, temperature=0.2)\n",
"print(\"\\n\\n Result from claude-2\", result)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ff1lKwUMMLJj",
"outputId": "bfddf6f8-36d4-45e5-92dc-349083fa41b8"
},
"execution_count": 9,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"\n",
" Result from claude-instant-1 {'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'role': 'assistant', 'content': \" The Los Angeles Dodgers won the 2020 World Series, defeating the Tampa Bay Rays 4-2. It was the Dodgers' first World Series title since 1988.\"}}], 'created': 1691536677.2676156, 'model': 'claude-instant-1', 'usage': {'prompt_tokens': 30, 'completion_tokens': 32, 'total_tokens': 62}}\n",
"\n",
"\n",
" Result from claude-2 {'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'role': 'assistant', 'content': ' The Los Angeles Dodgers won'}}], 'created': 1691536677.944753, 'model': 'claude-2', 'usage': {'prompt_tokens': 30, 'completion_tokens': 5, 'total_tokens': 35}}\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# @title Streaming Example: Request Claude-2\n",
"messages = [\n",
" {\"role\": \"system\", \"content\": \"You are a helpful assistant.\"},\n",
" {\"role\": \"user\", \"content\": \"how does a court case get to the Supreme Court?\"}\n",
" ]\n",
"\n",
"result = litellm.completion('claude-2', messages, stream=True)\n",
"for chunk in result:\n",
" print(chunk['choices'][0]['delta'])\n",
"\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "06hWKnNQMrV-",
"outputId": "7fdec0eb-d4a9-4882-f9c4-987ff9a31114"
},
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" Here\n",
"'s\n",
" a\n",
" quick\n",
" overview\n",
" of\n",
" how\n",
" a\n",
" court\n",
" case\n",
" can\n",
" reach\n",
" the\n",
" U\n",
".\n",
"S\n",
".\n",
" Supreme\n",
" Court\n",
":\n",
"\n",
"\n",
"-\n",
" The\n",
" case\n",
" must\n",
" first\n",
" be\n",
" heard\n",
" in\n",
" a\n",
" lower\n",
" trial\n",
" court\n",
" (\n",
"either\n",
" a\n",
" state\n",
" court\n",
" or\n",
" federal\n",
" district\n",
" court\n",
").\n",
" The\n",
" trial\n",
" court\n",
" makes\n",
" initial\n",
" r\n",
"ulings\n",
" and\n",
" produces\n",
" a\n",
" record\n",
" of\n",
" the\n",
" case\n",
".\n",
"\n",
"\n",
"-\n",
" The\n",
" losing\n",
" party\n",
" can\n",
" appeal\n",
" the\n",
" decision\n",
" to\n",
" an\n",
" appeals\n",
" court\n",
" (\n",
"a\n",
" state\n",
" appeals\n",
" court\n",
" for\n",
" state\n",
" cases\n",
",\n",
" or\n",
" a\n",
" federal\n",
" circuit\n",
" court\n",
" for\n",
" federal\n",
" cases\n",
").\n",
" The\n",
" appeals\n",
" court\n",
" reviews\n",
" the\n",
" trial\n",
" court\n",
"'s\n",
" r\n",
"ulings\n",
" and\n",
" can\n",
" affirm\n",
",\n",
" reverse\n",
",\n",
" or\n",
" modify\n",
" the\n",
" decision\n",
".\n",
"\n",
"\n",
"-\n",
" If\n",
" a\n",
" party\n",
" is\n",
" still\n",
" unsat\n",
"isf\n",
"ied\n",
" after\n",
" the\n",
" appeals\n",
" court\n",
" rules\n",
",\n",
" they\n",
" can\n",
" petition\n",
" the\n",
" Supreme\n",
" Court\n",
" to\n",
" hear\n",
" the\n",
" case\n",
" through\n",
" a\n",
" writ\n",
" of\n",
" cert\n",
"ior\n",
"ari\n",
".\n",
" \n",
"\n",
"\n",
"-\n",
" The\n",
" Supreme\n",
" Court\n",
" gets\n",
" thousands\n",
" of\n",
" cert\n",
" petitions\n",
" every\n",
" year\n",
" but\n",
" usually\n",
" only\n",
" agrees\n",
" to\n",
" hear\n",
" about\n",
" 100\n",
"-\n",
"150\n",
" of\n",
" cases\n",
" that\n",
" have\n",
" significant\n",
" national\n",
" importance\n",
" or\n",
" where\n",
" lower\n",
" courts\n",
" disagree\n",
" on\n",
" federal\n",
" law\n",
".\n",
" \n",
"\n",
"\n",
"-\n",
" If\n",
" 4\n",
" out\n",
" of\n",
" the\n",
" 9\n",
" Just\n",
"ices\n",
" vote\n",
" to\n",
" grant\n",
" cert\n",
" (\n",
"agree\n",
" to\n",
" hear\n",
" the\n",
" case\n",
"),\n",
" it\n",
" goes\n",
" on\n",
" the\n",
" Supreme\n",
" Court\n",
"'s\n",
" do\n",
"cket\n",
" for\n",
" arguments\n",
".\n",
"\n",
"\n",
"-\n",
" The\n",
" Supreme\n",
" Court\n",
" then\n",
" hears\n",
" oral\n",
" arguments\n",
",\n",
" considers\n",
" written\n",
" brief\n",
"s\n",
",\n",
" examines\n",
" the\n",
" lower\n",
" court\n",
" records\n",
",\n",
" and\n",
" issues\n",
" a\n",
" final\n",
" ruling\n",
" on\n",
" the\n",
" case\n",
",\n",
" which\n",
" serves\n",
" as\n",
" binding\n",
" precedent\n"
]
}
]
}
]
}

View file

@ -0,0 +1,153 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"## Install liteLLM https://github.com/BerriAI/litellm\n",
"liteLLM provides one interface to call gpt 3.5, hugging face inference endpoints"
],
"metadata": {
"id": "IGQZtR61AZSd"
}
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "x_4jcmmXcdm-",
"outputId": "c89e7817-561d-4867-904b-aa1634565cbb"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Requirement already satisfied: litellm==0.1.362 in /usr/local/lib/python3.10/dist-packages (0.1.362)\n",
"Requirement already satisfied: openai<0.28.0,>=0.27.8 in /usr/local/lib/python3.10/dist-packages (from litellm==0.1.362) (0.27.8)\n",
"Requirement already satisfied: python-dotenv<2.0.0,>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from litellm==0.1.362) (1.0.0)\n",
"Requirement already satisfied: tiktoken<0.5.0,>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from litellm==0.1.362) (0.4.0)\n",
"Requirement already satisfied: requests>=2.20 in /usr/local/lib/python3.10/dist-packages (from openai<0.28.0,>=0.27.8->litellm==0.1.362) (2.28.2)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from openai<0.28.0,>=0.27.8->litellm==0.1.362) (4.65.0)\n",
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from openai<0.28.0,>=0.27.8->litellm==0.1.362) (3.8.5)\n",
"Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from tiktoken<0.5.0,>=0.4.0->litellm==0.1.362) (2022.10.31)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai<0.28.0,>=0.27.8->litellm==0.1.362) (3.2.0)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai<0.28.0,>=0.27.8->litellm==0.1.362) (3.4)\n",
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai<0.28.0,>=0.27.8->litellm==0.1.362) (1.26.16)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai<0.28.0,>=0.27.8->litellm==0.1.362) (2023.7.22)\n",
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm==0.1.362) (23.1.0)\n",
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm==0.1.362) (6.0.4)\n",
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm==0.1.362) (4.0.2)\n",
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm==0.1.362) (1.9.2)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm==0.1.362) (1.4.0)\n",
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm==0.1.362) (1.3.1)\n"
]
}
],
"source": [
"!pip install litellm==\"0.1.362\""
]
},
{
"cell_type": "code",
"source": [
"from litellm import completion\n",
"import os\n",
"user_message = \"Hello, whats the weather in San Francisco??\"\n",
"messages = [{ \"content\": user_message,\"role\": \"user\"}]\n",
"\n",
"os.environ['HF_TOKEN'] = \"\"#@param\n",
"# get your hugging face token from here:\n",
"# https://huggingface.co/settings/tokens\n",
"\n",
"# Optional if you want to run OpenAI TOO\n",
"os.environ['OPENAI_API_KEY'] = \"\" #@param\n",
"\n",
"response = completion(\"stabilityai/stablecode-completion-alpha-3b-4k\", messages=messages, hugging_face=True)\n",
"print(\"Response from stabilityai/stablecode-completion-alpha-3b-4k\")\n",
"print(response['choices'][0]['message']['content'])\n",
"print(\"\\n\\n\")\n",
"\n",
"response = completion(\"bigcode/starcoder\", messages=messages, hugging_face=True)\n",
"print(\"Response from bigcode/starcoder\")\n",
"print(response['choices'][0]['message']['content'])\n",
"print(\"\\n\\n\")\n",
"\n",
"response = completion(\"google/flan-t5-xxl\", messages=messages, hugging_face=True)\n",
"print(\"Response from google/flan-t5-xxl\")\n",
"print(response['choices'][0]['message']['content'])\n",
"print(\"\\n\\n\")\n",
"\n",
"response = completion(\"google/flan-t5-large\", messages=messages, hugging_face=True)\n",
"print(\"Response from google/flan-t5-large\")\n",
"print(response['choices'][0]['message']['content'])\n",
"print(\"\\n\\n\")\n",
"\n",
"response = completion(model=\"gpt-3.5-turbo\", messages=messages)\n",
"print(response['choices'][0]['message']['content'])\n",
"print(response)\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "vC54VW3jvLnN",
"outputId": "e6616221-12c9-4313-dd03-fd94fa095e8e"
},
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Response from stabilityai/stablecode-completion-alpha-3b-4k\n",
"Hello, whats the weather in San Francisco??\",\n",
" \"id\": 1,\n",
" \"\n",
"\n",
"\n",
"\n",
"Response from bigcode/starcoder\n",
"Hello, whats the weather in San Francisco??\")\n",
"\n",
"# print(response)\n",
"\n",
"# print(response.text)\n",
"\n",
"#\n",
"\n",
"\n",
"\n",
"Response from google/flan-t5-xxl\n",
"a little cold\n",
"\n",
"\n",
"\n",
"Response from google/flan-t5-large\n",
"cool\n",
"\n",
"\n",
"\n",
"I'm sorry, but I am an AI language model and do not have real-time data. However, you can check the weather in San Francisco by searching for \"San Francisco weather\" on a search engine or checking a reliable weather website or app.\n"
]
}
]
}
]
}

View file

@ -34,5 +34,26 @@
| Model Name | Function Call | Required OS Variables |
|------------------|--------------------------------------------|--------------------------------------|
| claude-instant-1 | `completion('claude-instant-1', messages)` | `os.environ['ANTHROPIC_API_KEY']` |
| claude-v2 | `completion('claude-v2', messages)` | `os.environ['ANTHROPIC_API_KEY']` |
| claude-2 | `completion('claude-2', messages)` | `os.environ['ANTHROPIC_API_KEY']` |
### Hugging Face Inference API
All [`text2text-generation`](https://huggingface.co/models?library=transformers&pipeline_tag=text2text-generation&sort=downloads) and [`text-generation`](https://huggingface.co/models?library=transformers&pipeline_tag=text-generation&sort=downloads) models are supported by liteLLM. You can use any text model from Hugging Face with the following steps:
* Copy the `model repo` URL from Hugging Face and set it as the `model` parameter in the completion call.
* Set `hugging_face` parameter to `True`.
* Make sure to set the hugging face API key
Here are some examples of supported models:
**Note that the models mentioned in the table are examples, and you can use any text model available on Hugging Face by following the steps above.**
| Model Name | Function Call | Required OS Variables |
|------------------|-------------------------------------------------------------------------------------|--------------------------------------|
| [stabilityai/stablecode-completion-alpha-3b-4k](https://huggingface.co/stabilityai/stablecode-completion-alpha-3b-4k) | `completion(model="stabilityai/stablecode-completion-alpha-3b-4k", messages=messages, hugging_face=True)` | `os.environ['HF_TOKEN']` |
| [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) | `completion(model="bigcode/starcoder", messages=messages, hugging_face=True)` | `os.environ['HF_TOKEN']` |
| [google/flan-t5-xxl](https://huggingface.co/google/flan-t5-xxl) | `completion(model="google/flan-t5-xxl", messages=messages, hugging_face=True)` | `os.environ['HF_TOKEN']` |
| [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) | `completion(model="google/flan-t5-large", messages=messages, hugging_face=True)` | `os.environ['HF_TOKEN']` |

45
docs/token_usage.md Normal file
View file

@ -0,0 +1,45 @@
# Token Usage
By default LiteLLM returns token usage in all completion requests ([See here](https://litellm.readthedocs.io/en/latest/output/))
However, we also expose 3 public helper functions to calculate token usage across providers:
- `token_counter`: This returns the number of tokens for a given input - it uses the tokenizer based on the model, and defaults to tiktoken if no model-specific tokenizer is available.
- `cost_per_token`: This returns the cost (in USD) for prompt (input) and completion (output) tokens. It utilizes our model_cost map which can be found in `__init__.py` and also as a [community resource](https://github.com/BerriAI/litellm/blob/main/cookbook/community-resources/max_tokens.json).
- `completion_cost`: This returns the overall cost (in USD) for a given LLM API Call. It combines `token_counter` and `cost_per_token` to return the cost for that query (counting both cost of input and output).
## Example Usage
1. `token_counter`
```python
from litellm import token_counter
messages = [{"user": "role", "content": "Hey, how's it going"}]
print(token_counter(model="gpt-3.5-turbo", messages=messages))
```
2. `cost_per_token`
```python
from litellm import cost_per_token
prompt_tokens = 5
completion_tokens = 10
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = cost_per_token(model="gpt-3.5-turbo", prompt_tokens=prompt_tokens, completion_tokens=completion_tokens))
print(prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar)
```
3. `completion_cost`
```python
from litellm import completion_cost
prompt = "Hey, how's it going"
completion = "Hi, I'm gpt - I am doing well"
cost_of_query = completion_cost(model="gpt-3.5-turbo", prompt=prompt, completion=completion))
print(cost_of_query)
```

View file

@ -4,13 +4,34 @@ failure_callback = []
set_verbose=False
telemetry=True
max_tokens = 256 # OpenAI Defaults
retry = True # control tenacity retries.
retry = True
openai_key = None
azure_key = None
anthropic_key = None
replicate_key = None
cohere_key = None
openrouter_key = None
hugging_api_token = None
model_cost = {
"gpt-3.5-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-35-turbo": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002}, # azure model name
"gpt-3.5-turbo-0613": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-3.5-turbo-0301": {"max_tokens": 4000, "input_cost_per_token": 0.0000015, "output_cost_per_token": 0.000002},
"gpt-3.5-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
"gpt-35-turbo-16k": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004}, # azure model name
"gpt-3.5-turbo-16k-0613": {"max_tokens": 16000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.000004},
"gpt-4": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
"gpt-4-0613": {"max_tokens": 8000, "input_cost_per_token": 0.000003, "output_cost_per_token": 0.00006},
"gpt-4-32k": {"max_tokens": 8000, "input_cost_per_token": 0.00006, "output_cost_per_token": 0.00012},
"claude-instant-1": {"max_tokens": 100000, "input_cost_per_token": 0.00000163, "output_cost_per_token": 0.00000551},
"claude-2": {"max_tokens": 100000, "input_cost_per_token": 0.00001102, "output_cost_per_token": 0.00003268},
"text-bison-001": {"max_tokens": 8192, "input_cost_per_token": 0.000004, "output_cost_per_token": 0.000004},
"chat-bison-001": {"max_tokens": 4096, "input_cost_per_token": 0.000002, "output_cost_per_token": 0.000002},
"command-nightly": {"max_tokens": 4096, "input_cost_per_token": 0.000015, "output_cost_per_token": 0.000015},
}
####### THREAD-SPECIFIC DATA ###################
class MyLocal(threading.local):
def __init__(self):
@ -83,7 +104,7 @@ open_ai_embedding_models = [
'text-embedding-ada-002'
]
from .timeout import timeout
from .utils import client, logging, exception_type, get_optional_params, modify_integration
from .utils import client, logging, exception_type, get_optional_params, modify_integration, token_counter, cost_per_token, completion_cost
from .main import * # Import all the symbols from main.py
from .integrations import *
from openai.error import AuthenticationError, InvalidRequestError, RateLimitError, ServiceUnavailableError, OpenAIError

View file

@ -2,7 +2,6 @@
# On success, logs events to Helicone
import dotenv, os
import requests
from anthropic import HUMAN_PROMPT, AI_PROMPT
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback
class HeliconeLogger:
@ -14,6 +13,7 @@ class HeliconeLogger:
self.key = os.getenv('HELICONE_API_KEY')
def claude_mapping(self, model, messages, response_obj):
from anthropic import HUMAN_PROMPT, AI_PROMPT
prompt = f"{HUMAN_PROMPT}"
for message in messages:
if "role" in message:

View file

@ -1,6 +1,5 @@
import os, openai, cohere, replicate, sys
import os, openai, sys
from typing import Any
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
from functools import partial
import dotenv, traceback, random, asyncio, time
from copy import deepcopy
@ -8,15 +7,9 @@ import litellm
from litellm import client, logging, exception_type, timeout, get_optional_params
import tiktoken
encoding = tiktoken.get_encoding("cl100k_base")
from tenacity import (
retry,
stop_after_attempt,
wait_random_exponential,
) # for exponential backoff
from litellm.utils import get_secret
from litellm.utils import get_secret, install_and_import, CustomStreamWrapper
####### ENVIRONMENT VARIABLES ###################
dotenv.load_dotenv() # Loading env variables using dotenv
new_response = {
"choices": [
{
@ -28,9 +21,7 @@ new_response = {
}
]
}
# TODO move this to utils.py
# TODO add translations
# TODO see if this worked - model_name == krrish
####### COMPLETION ENDPOINTS ################
#############################################
async def acompletion(*args, **kwargs):
@ -52,7 +43,8 @@ def completion(
temperature=1, top_p=1, n=1, stream=False, stop=None, max_tokens=float('inf'),
presence_penalty=0, frequency_penalty=0, logit_bias={}, user="", deployment_id=None,
# Optional liteLLM function params
*, return_async=False, api_key=None, force_timeout=60, azure=False, logger_fn=None, verbose=False
*, return_async=False, api_key=None, force_timeout=60, azure=False, logger_fn=None, verbose=False,
hugging_face = False, replicate=False,
):
try:
global new_response
@ -61,13 +53,16 @@ def completion(
optional_params = get_optional_params(
functions=functions, function_call=function_call,
temperature=temperature, top_p=top_p, n=n, stream=stream, stop=stop, max_tokens=max_tokens,
presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, logit_bias=logit_bias, user=user, deployment_id=deployment_id
presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, logit_bias=logit_bias, user=user, deployment_id=deployment_id,
# params to identify the model
model=model, replicate=replicate, hugging_face=hugging_face
)
if azure == True:
# azure configs
openai.api_type = "azure"
openai.api_base = litellm.api_base if litellm.api_base is not None else get_secret("AZURE_API_BASE")
openai.api_version = litellm.api_version if litellm.api_version is not None else get_secret("AZURE_API_VERSION")
# set key
if api_key:
openai.api_key = api_key
elif litellm.azure_key:
@ -92,6 +87,7 @@ def completion(
)
elif model in litellm.open_ai_chat_completion_models:
openai.api_type = "openai"
# note: if a user sets a custom base - we should ensure this works
openai.api_base = litellm.api_base if litellm.api_base is not None else "https://api.openai.com/v1"
openai.api_version = None
if litellm.organization:
@ -154,7 +150,10 @@ def completion(
model_response["model"] = model
model_response["usage"] = response["usage"]
response = model_response
elif "replicate" in model:
elif "replicate" in model or replicate == True:
# import replicate/if it fails then pip install replicate
install_and_import("replicate")
import replicate
# replicate defaults to os.environ.get("REPLICATE_API_TOKEN")
# checking in case user set it to REPLICATE_API_KEY instead
if not get_secret("REPLICATE_API_TOKEN") and get_secret("REPLICATE_API_KEY"):
@ -175,6 +174,11 @@ def completion(
output = replicate.run(
model,
input=input)
if 'stream' in optional_params and optional_params['stream'] == True:
# don't try to access stream object,
# let the stream handler know this is replicate
response = CustomStreamWrapper(output, "replicate")
return response
response = ""
for item in output:
response += item
@ -194,6 +198,10 @@ def completion(
}
response = model_response
elif model in litellm.anthropic_models:
# import anthropic/if it fails then pip install anthropic
install_and_import("anthropic")
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
#anthropic defaults to os.environ.get("ANTHROPIC_API_KEY")
if api_key:
os.environ["ANTHROPIC_API_KEY"] = api_key
@ -220,8 +228,14 @@ def completion(
completion = anthropic.completions.create(
model=model,
prompt=prompt,
max_tokens_to_sample=max_tokens_to_sample
max_tokens_to_sample=max_tokens_to_sample,
**optional_params
)
if 'stream' in optional_params and optional_params['stream'] == True:
# don't try to access stream object,
response = CustomStreamWrapper(completion, model)
return response
completion_response = completion.completion
## LOGGING
logging(model=model, input=prompt, azure=azure, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
@ -274,6 +288,9 @@ def completion(
**optional_params
)
elif model in litellm.cohere_models:
# import cohere/if it fails then pip install cohere
install_and_import("cohere")
import cohere
if api_key:
cohere_key = api_key
elif litellm.cohere_key:
@ -287,8 +304,14 @@ def completion(
## COMPLETION CALL
response = co.generate(
model=model,
prompt = prompt
prompt = prompt,
**optional_params
)
if 'stream' in optional_params and optional_params['stream'] == True:
# don't try to access stream object,
response = CustomStreamWrapper(response, model)
return response
completion_response = response[0].text
## LOGGING
logging(model=model, input=prompt, azure=azure, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
@ -304,6 +327,33 @@ def completion(
"total_tokens": prompt_tokens + completion_tokens
}
response = model_response
elif hugging_face == True:
import requests
API_URL = f"https://api-inference.huggingface.co/models/{model}"
HF_TOKEN = get_secret("HF_TOKEN")
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, azure=azure, logger_fn=logger_fn)
input_payload = {"inputs": prompt}
response = requests.post(API_URL, headers=headers, json=input_payload)
completion_response = response.json()[0]['generated_text']
## LOGGING
logging(model=model, input=prompt, azure=azure, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(encoding.encode(completion_response))
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = completion_response
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
response = model_response
else:
## LOGGING
logging(model=model, input=messages, azure=azure, logger_fn=logger_fn)

View file

@ -1 +0,0 @@
test 1

View file

@ -7,8 +7,10 @@ sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the
import pytest
import litellm
from litellm import embedding, completion
from infisical import InfisicalClient
# litellm.set_verbose = True
litellm.secret_manager_client = InfisicalClient(token=os.environ["INFISICAL_TOKEN"])
user_message = "Hello, whats the weather in San Francisco??"
messages = [{ "content": user_message,"role": "user"}]
@ -16,6 +18,59 @@ messages = [{ "content": user_message,"role": "user"}]
def logger_fn(user_model_dict):
print(f"user_model_dict: {user_model_dict}")
def test_completion_claude():
try:
response = completion(model="claude-instant-1", messages=messages, logger_fn=logger_fn)
# Add any assertions here to check the response
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_claude_stream():
try:
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "how does a court case get to the Supreme Court?"}
]
response = completion(model="claude-2", messages=messages, stream=True)
# Add any assertions here to check the response
for chunk in response:
print(chunk['choices'][0]['delta']) # same as openai format
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_hf_api():
try:
user_message = "write some code to find the sum of two numbers"
messages = [{ "content": user_message,"role": "user"}]
response = completion(model="stabilityai/stablecode-completion-alpha-3b-4k", messages=messages, hugging_face=True)
# Add any assertions here to check the response
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_cohere():
try:
response = completion(model="command-nightly", messages=messages, max_tokens=500)
# Add any assertions here to check the response
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_cohere_stream():
try:
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "how does a court case get to the Supreme Court?"}
]
response = completion(model="command-nightly", messages=messages, stream=True, max_tokens=50)
# Add any assertions here to check the response
for chunk in response:
print(chunk['choices'][0]['delta']) # same as openai format
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_openai():
try:
response = completion(model="gpt-3.5-turbo", messages=messages)
@ -92,18 +147,25 @@ def test_completion_azure():
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_claude():
# Replicate API endpoints are unstable -> throw random CUDA errors -> this means our tests can fail even if our tests weren't incorrect.
def test_completion_replicate_llama_stream():
model_name = "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
try:
response = completion(model="claude-instant-1", messages=messages, logger_fn=logger_fn)
response = completion(model=model_name, messages=messages, stream=True)
# Add any assertions here to check the response
for result in response:
print(result)
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_cohere():
def test_completion_replicate_stability_stream():
model_name = "stability-ai/stablelm-tuned-alpha-7b:c49dae362cbaecd2ceabb5bd34fdb68413c4ff775111fea065d259d577757beb"
try:
response = completion(model="command-nightly", messages=messages, max_tokens=500)
response = completion(model=model_name, messages=messages, stream=True, replicate=True)
# Add any assertions here to check the response
for result in response:
print(result)
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@ -124,3 +186,14 @@ def test_completion_cohere():
# pass
# else:
# pytest.fail(f"Error occurred: {e}")
def test_completion_replicate_stability():
model_name = "stability-ai/stablelm-tuned-alpha-7b:c49dae362cbaecd2ceabb5bd34fdb68413c4ff775111fea065d259d577757beb"
try:
response = completion(model=model_name, messages=messages, replicate=True)
# Add any assertions here to check the response
for result in response:
print(result)
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")

View file

@ -0,0 +1,20 @@
import sys, os
import traceback
import pytest
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
import litellm
from litellm import embedding, completion
from infisical import InfisicalClient
# litellm.set_verbose = True
litellm.secret_manager_client = InfisicalClient(token=os.environ["INFISICAL_TOKEN"])
def test_openai_embedding():
try:
response = embedding(model='text-embedding-ada-002', input=["good morning from litellm"])
# Add any assertions here to check the response
print(f"response: {str(response)}")
except Exception as e:
pytest.fail(f"Error occurred: {e}")

View file

@ -4,7 +4,6 @@ import subprocess, os
import litellm, openai
import random, uuid, requests
import datetime, time
from anthropic import Anthropic
import tiktoken
encoding = tiktoken.get_encoding("cl100k_base")
from .integrations.helicone import HeliconeLogger
@ -34,6 +33,19 @@ def print_verbose(print_statement):
if random.random() <= 0.3:
print("Get help - https://discord.com/invite/wuPM9dRgDw")
####### Package Import Handler ###################
import importlib
import subprocess
def install_and_import(package):
try:
importlib.import_module(package)
except ImportError:
print(f"{package} is not installed. Installing...")
subprocess.call([sys.executable, '-m', 'pip', 'install', package])
finally:
globals()[package] = importlib.import_module(package)
##################################################
####### LOGGING ###################
#Logging function -> log the exact model details + what's being sent | Non-Blocking
def logging(model=None, input=None, azure=False, additional_args={}, logger_fn=None, exception=None):
@ -119,6 +131,51 @@ def client(original_function):
raise e
return wrapper
####### USAGE CALCULATOR ################
def token_counter(model, text):
# use tiktoken or anthropic's tokenizer depending on the model
num_tokens = 0
if "claude" in model:
install_and_import('anthropic')
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
anthropic = Anthropic()
num_tokens = anthropic.count_tokens(text)
else:
num_tokens = len(encoding.encode(text))
return num_tokens
def cost_per_token(model="gpt-3.5-turbo", prompt_tokens = 0, completion_tokens = 0):
## given
prompt_tokens_cost_usd_dollar = 0
completion_tokens_cost_usd_dollar = 0
model_cost_ref = litellm.model_cost
if model in model_cost_ref:
prompt_tokens_cost_usd_dollar = model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
completion_tokens_cost_usd_dollar = model_cost_ref[model]["output_cost_per_token"] * completion_tokens
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
else:
# calculate average input cost
input_cost_sum = 0
output_cost_sum = 0
model_cost_ref = litellm.model_cost
for model in model_cost_ref:
input_cost_sum += model_cost_ref[model]["input_cost_per_token"]
output_cost_sum += model_cost_ref[model]["output_cost_per_token"]
avg_input_cost = input_cost_sum / len(model_cost_ref.keys())
avg_output_cost = output_cost_sum / len(model_cost_ref.keys())
prompt_tokens_cost_usd_dollar = avg_input_cost * prompt_tokens
completion_tokens_cost_usd_dollar = avg_output_cost * completion_tokens
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
def completion_cost(model="gpt-3.5-turbo", prompt="", completion=""):
prompt_tokens = tokenizer(model=model, text=prompt)
completion_tokens = tokenizer(model=model, text=completion)
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = cost_per_token(model=model, prompt_tokens = prompt_tokens, completion_tokens = completion_tokens)
return prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
####### HELPER FUNCTIONS ################
def get_optional_params(
# 12 optional params
@ -134,9 +191,39 @@ def get_optional_params(
frequency_penalty = 0,
logit_bias = {},
user = "",
deployment_id = None
deployment_id = None,
model = None,
replicate = False,
hugging_face = False,
):
optional_params = {}
if model in litellm.anthropic_models:
# handle anthropic params
if stream:
optional_params["stream"] = stream
if stop != None:
optional_params["stop_sequences"] = stop
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
return optional_params
elif model in litellm.cohere_models:
# handle cohere params
if stream:
optional_params["stream"] = stream
if temperature != 1:
optional_params["temperature"] = temperature
if max_tokens != float('inf'):
optional_params["max_tokens"] = max_tokens
return optional_params
elif replicate == True:
# any replicate models
# TODO: handle translating remaining replicate params
if stream:
optional_params["stream"] = stream
return optional_params
else:# assume passing in params for openai/azure openai
if functions != []:
optional_params["functions"] = functions
if function_call != "":
@ -164,6 +251,7 @@ def get_optional_params(
if deployment_id != None:
optional_params["deployment_id"] = deployment_id
return optional_params
return optional_params
def set_callbacks(callback_list):
global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, heliconeLogger, aispendLogger, berrispendLogger, supabaseClient
@ -324,19 +412,6 @@ def handle_failure(exception, traceback_exception, start_time, end_time, args, k
logging(logger_fn=user_logger_fn, exception=e)
pass
def prompt_token_calculator(model, messages):
# use tiktoken or anthropic's tokenizer depending on the model
text = " ".join(message["content"] for message in messages)
num_tokens = 0
if "claude" in model:
anthropic = Anthropic()
num_tokens = anthropic.count_tokens(text)
else:
num_tokens = len(encoding.encode(text))
return num_tokens
def handle_success(args, kwargs, result, start_time, end_time):
global heliconeLogger, aispendLogger
try:
@ -396,6 +471,19 @@ def handle_success(args, kwargs, result, start_time, end_time):
print_verbose(f"[Non-Blocking] Success Callback Error - {traceback.format_exc()}")
pass
def prompt_token_calculator(model, messages):
# use tiktoken or anthropic's tokenizer depending on the model
text = " ".join(message["content"] for message in messages)
num_tokens = 0
if "claude" in model:
install_and_import('anthropic')
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
anthropic = Anthropic()
num_tokens = anthropic.count_tokens(text)
else:
num_tokens = len(encoding.encode(text))
return num_tokens
# integration helper function
def modify_integration(integration_name, integration_params):
global supabaseClient
@ -520,3 +608,30 @@ def get_secret(secret_name):
return os.environ.get(secret_name)
else:
return os.environ.get(secret_name)
######## Streaming Class ############################
# wraps the completion stream to return the correct format for the model
# replicate/anthropic/cohere
class CustomStreamWrapper:
def __init__(self, completion_stream, model):
self.model = model
if model in litellm.cohere_models:
# cohere does not return an iterator, so we need to wrap it in one
self.completion_stream = iter(completion_stream)
else:
self.completion_stream = completion_stream
def __iter__(self):
return self
def __next__(self):
if self.model in litellm.anthropic_models:
chunk = next(self.completion_stream)
return {"choices": [{"delta": chunk.completion}]}
elif self.model == "replicate":
chunk = next(self.completion_stream)
return {"choices": [{"delta": chunk}]}
elif self.model in litellm.cohere_models:
chunk = next(self.completion_stream)
return {"choices": [{"delta": chunk.text}]}

View file

@ -6,6 +6,8 @@ nav:
- Input - Request Body: input.md
- Output - Response Object: output.md
- Streaming & Async Calls: stream.md
- token usage:
- Helper Functions: token_usage.md
- 🤖 Supported LLM APIs:
- Supported Completion & Chat APIs: supported.md
- Supported Embedding APIs: supported_embedding.md

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
version = "0.1.356"
version = "0.1.367"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT License"
@ -8,14 +8,8 @@ readme = "README.md"
[tool.poetry.dependencies]
python = "^3.8"
openai = {extras = ["datalib"], version = "^0.27.8"}
cohere = "^4.18.0"
pytest = "^7.4.0"
pydantic = "^2.1.1"
anthropic = "^0.3.7"
replicate = "^0.10.0"
openai = "^0.27.8"
python-dotenv = "^1.0.0"
tenacity = "^8.0.1"
tiktoken = "^0.4.0"
[build-system]

View file

@ -1,11 +1,5 @@
pydantic
# used by CI/CD testing
openai
cohere
anthropic
replicate
pytest
python-dotenv
openai[datalib]
tenacity
openai
tiktoken
infisical