mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
fix(proxy_server): returns better error messages for invalid api errors
This commit is contained in:
parent
262f874621
commit
42e0d7cf68
3 changed files with 67 additions and 72 deletions
|
@ -118,6 +118,66 @@ def data_generator(response):
|
|||
print_verbose(f"returned chunk: {chunk}")
|
||||
yield f"data: {json.dumps(chunk)}\n\n"
|
||||
|
||||
def litellm_completion(data, type):
|
||||
try:
|
||||
if user_model:
|
||||
data["model"] = user_model
|
||||
# override with user settings
|
||||
if user_temperature:
|
||||
data["temperature"] = user_temperature
|
||||
if user_max_tokens:
|
||||
data["max_tokens"] = user_max_tokens
|
||||
if user_api_base:
|
||||
data["api_base"] = user_api_base
|
||||
## CUSTOM PROMPT TEMPLATE ## - run `litellm --config` to set this
|
||||
litellm.register_prompt_template(
|
||||
model=user_model,
|
||||
roles={
|
||||
"system": {
|
||||
"pre_message": os.getenv("MODEL_SYSTEM_MESSAGE_START_TOKEN", ""),
|
||||
"post_message": os.getenv("MODEL_SYSTEM_MESSAGE_END_TOKEN", ""),
|
||||
},
|
||||
"assistant": {
|
||||
"pre_message": os.getenv("MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""),
|
||||
"post_message": os.getenv("MODEL_ASSISTANT_MESSAGE_END_TOKEN", "")
|
||||
},
|
||||
"user": {
|
||||
"pre_message": os.getenv("MODEL_USER_MESSAGE_START_TOKEN", ""),
|
||||
"post_message": os.getenv("MODEL_USER_MESSAGE_END_TOKEN", "")
|
||||
}
|
||||
},
|
||||
initial_prompt_value=os.getenv("MODEL_PRE_PROMPT", ""),
|
||||
final_prompt_value=os.getenv("MODEL_POST_PROMPT", "")
|
||||
)
|
||||
if type == "completion":
|
||||
response = litellm.text_completion(**data)
|
||||
elif type == "chat_completion":
|
||||
response = litellm.completion(**data)
|
||||
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
|
||||
return StreamingResponse(data_generator(response), media_type='text/event-stream')
|
||||
print_verbose(f"response: {response}")
|
||||
return response
|
||||
except Exception as e:
|
||||
if "Invalid response object from API" in str(e):
|
||||
completion_call_details = {}
|
||||
if user_model:
|
||||
completion_call_details["model"] = user_model
|
||||
else:
|
||||
completion_call_details["model"] = data['model']
|
||||
|
||||
if user_api_base:
|
||||
completion_call_details["api_base"] = user_api_base
|
||||
else:
|
||||
completion_call_details["api_base"] = None
|
||||
print(f"\033[1;31mLiteLLM.Exception: Invalid API Call. Call details: Model: \033[1;37m{completion_call_details['model']}\033[1;31m; LLM Provider: \033[1;37m{e.llm_provider}\033[1;31m; Custom API Base - \033[1;37m{completion_call_details['api_base']}\033[1;31m\033[0m")
|
||||
if completion_call_details["api_base"] == "http://localhost:11434":
|
||||
print()
|
||||
print("Trying to call ollama? Try `litellm --model ollama/llama2 --api_base http://localhost:11434`")
|
||||
print()
|
||||
else:
|
||||
print(f"\033[1;31mLiteLLM.Exception: {str(e)}\033[0m")
|
||||
return {"message": "An error occurred"}, 500
|
||||
|
||||
#### API ENDPOINTS ####
|
||||
@router.get("/models") # if project requires model list
|
||||
def model_list():
|
||||
|
@ -136,82 +196,15 @@ def model_list():
|
|||
@router.post("/completions")
|
||||
async def completion(request: Request):
|
||||
data = await request.json()
|
||||
print_verbose(f"data passed in: {data}")
|
||||
if user_model:
|
||||
data["model"] = user_model
|
||||
if user_api_base:
|
||||
data["api_base"] = user_api_base
|
||||
# override with user settings
|
||||
if user_temperature:
|
||||
data["temperature"] = user_temperature
|
||||
if user_max_tokens:
|
||||
data["max_tokens"] = user_max_tokens
|
||||
|
||||
## check for custom prompt template ##
|
||||
litellm.register_prompt_template(
|
||||
model=user_model,
|
||||
roles={
|
||||
"system": {
|
||||
"pre_message": os.getenv("MODEL_SYSTEM_MESSAGE_START_TOKEN", ""),
|
||||
"post_message": os.getenv("MODEL_SYSTEM_MESSAGE_END_TOKEN", ""),
|
||||
},
|
||||
"assistant": {
|
||||
"pre_message": os.getenv("MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""),
|
||||
"post_message": os.getenv("MODEL_ASSISTANT_MESSAGE_END_TOKEN", "")
|
||||
},
|
||||
"user": {
|
||||
"pre_message": os.getenv("MODEL_USER_MESSAGE_START_TOKEN", ""),
|
||||
"post_message": os.getenv("MODEL_USER_MESSAGE_END_TOKEN", "")
|
||||
}
|
||||
},
|
||||
initial_prompt_value=os.getenv("MODEL_PRE_PROMPT", ""),
|
||||
final_prompt_value=os.getenv("MODEL_POST_PROMPT", "")
|
||||
)
|
||||
response = litellm.text_completion(**data)
|
||||
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
|
||||
return StreamingResponse(data_generator(response), media_type='text/event-stream')
|
||||
return response
|
||||
return litellm_completion(data=data, type="completion")
|
||||
|
||||
@router.post("/chat/completions")
|
||||
async def chat_completion(request: Request):
|
||||
data = await request.json()
|
||||
print_verbose(f"data passed in: {data}")
|
||||
if user_model:
|
||||
data["model"] = user_model
|
||||
# override with user settings
|
||||
if user_temperature:
|
||||
data["temperature"] = user_temperature
|
||||
if user_max_tokens:
|
||||
data["max_tokens"] = user_max_tokens
|
||||
if user_api_base:
|
||||
data["api_base"] = user_api_base
|
||||
## check for custom prompt template ##
|
||||
litellm.register_prompt_template(
|
||||
model=user_model,
|
||||
roles={
|
||||
"system": {
|
||||
"pre_message": os.getenv("MODEL_SYSTEM_MESSAGE_START_TOKEN", ""),
|
||||
"post_message": os.getenv("MODEL_SYSTEM_MESSAGE_END_TOKEN", ""),
|
||||
},
|
||||
"assistant": {
|
||||
"pre_message": os.getenv("MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""),
|
||||
"post_message": os.getenv("MODEL_ASSISTANT_MESSAGE_END_TOKEN", "")
|
||||
},
|
||||
"user": {
|
||||
"pre_message": os.getenv("MODEL_USER_MESSAGE_START_TOKEN", ""),
|
||||
"post_message": os.getenv("MODEL_USER_MESSAGE_END_TOKEN", "")
|
||||
}
|
||||
},
|
||||
initial_prompt_value=os.getenv("MODEL_PRE_PROMPT", ""),
|
||||
final_prompt_value=os.getenv("MODEL_POST_PROMPT", "")
|
||||
)
|
||||
response = litellm.completion(**data)
|
||||
|
||||
response = litellm_completion(data, type="chat_completion")
|
||||
# track cost of this response, using litellm.completion_cost
|
||||
await track_cost(response)
|
||||
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
|
||||
return StreamingResponse(data_generator(response), media_type='text/event-stream')
|
||||
print_verbose(f"response: {response}")
|
||||
track_cost(response)
|
||||
return response
|
||||
|
||||
async def track_cost(response):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue