mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
feat(sagemaker.py): initial commit of working sagemaker with aioboto3
This commit is contained in:
parent
ad7e856a02
commit
460b48914e
3 changed files with 117 additions and 42 deletions
|
@ -1,4 +1,4 @@
|
||||||
import os, types
|
import os, types, traceback
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
import json
|
import json
|
||||||
import requests
|
import requests
|
||||||
|
@ -127,6 +127,7 @@ def completion(
|
||||||
optional_params=None,
|
optional_params=None,
|
||||||
litellm_params=None,
|
litellm_params=None,
|
||||||
logger_fn=None,
|
logger_fn=None,
|
||||||
|
acompletion: bool = False,
|
||||||
):
|
):
|
||||||
import boto3
|
import boto3
|
||||||
|
|
||||||
|
@ -213,11 +214,19 @@ def completion(
|
||||||
)
|
)
|
||||||
|
|
||||||
return response["Body"]
|
return response["Body"]
|
||||||
|
elif acompletion == True:
|
||||||
|
_data = {"inputs": prompt, "parameters": inference_params}
|
||||||
|
return async_completion(
|
||||||
|
optional_params=optional_params,
|
||||||
|
encoding=encoding,
|
||||||
|
model_response=model_response,
|
||||||
|
model=model,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
data=_data,
|
||||||
|
)
|
||||||
data = json.dumps({"inputs": prompt, "parameters": inference_params}).encode(
|
data = json.dumps({"inputs": prompt, "parameters": inference_params}).encode(
|
||||||
"utf-8"
|
"utf-8"
|
||||||
)
|
)
|
||||||
|
|
||||||
## LOGGING
|
## LOGGING
|
||||||
request_str = f"""
|
request_str = f"""
|
||||||
response = client.invoke_endpoint(
|
response = client.invoke_endpoint(
|
||||||
|
@ -302,45 +311,93 @@ def completion(
|
||||||
return model_response
|
return model_response
|
||||||
|
|
||||||
|
|
||||||
# async def acompletion(
|
async def async_completion(
|
||||||
# client: Any,
|
optional_params,
|
||||||
# model_response: ModelResponse,
|
encoding,
|
||||||
# model: str,
|
model_response: ModelResponse,
|
||||||
# logging_obj: Any,
|
model: str,
|
||||||
# data: dict,
|
logging_obj: Any,
|
||||||
# hf_model_name: str,
|
data: dict,
|
||||||
# ):
|
):
|
||||||
# """
|
"""
|
||||||
# Use boto3 create_invocation_async endpoint
|
Use aioboto3
|
||||||
# """
|
"""
|
||||||
# ## LOGGING
|
import aioboto3
|
||||||
# request_str = f"""
|
|
||||||
# response = client.invoke_endpoint(
|
session = aioboto3.Session()
|
||||||
# EndpointName={model},
|
async with session.client("sagemaker-runtime", region_name="us-west-2") as client:
|
||||||
# ContentType="application/json",
|
## LOGGING
|
||||||
# Body={data},
|
request_str = f"""
|
||||||
# CustomAttributes="accept_eula=true",
|
response = client.invoke_endpoint(
|
||||||
# )
|
EndpointName={model},
|
||||||
# """ # type: ignore
|
ContentType="application/json",
|
||||||
# logging_obj.pre_call(
|
Body={data},
|
||||||
# input=data["prompt"],
|
CustomAttributes="accept_eula=true",
|
||||||
# api_key="",
|
)
|
||||||
# additional_args={
|
""" # type: ignore
|
||||||
# "complete_input_dict": data,
|
logging_obj.pre_call(
|
||||||
# "request_str": request_str,
|
input=data["inputs"],
|
||||||
# "hf_model_name": hf_model_name,
|
api_key="",
|
||||||
# },
|
additional_args={
|
||||||
# )
|
"complete_input_dict": data,
|
||||||
# ## COMPLETION CALL
|
"request_str": request_str,
|
||||||
# try:
|
},
|
||||||
# response = client.invoke_endpoint(
|
)
|
||||||
# EndpointName=model,
|
encoded_data = json.dumps(data).encode("utf-8")
|
||||||
# ContentType="application/json",
|
try:
|
||||||
# Body=data,
|
response = await client.invoke_endpoint(
|
||||||
# CustomAttributes="accept_eula=true",
|
EndpointName=model,
|
||||||
# )
|
ContentType="application/json",
|
||||||
# except Exception as e:
|
Body=encoded_data,
|
||||||
# raise SagemakerError(status_code=500, message=f"{str(e)}")
|
CustomAttributes="accept_eula=true",
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
raise SagemakerError(status_code=500, message=f"{str(e)}")
|
||||||
|
response = await response["Body"].read()
|
||||||
|
response = response.decode("utf8")
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.post_call(
|
||||||
|
input=data["inputs"],
|
||||||
|
api_key="",
|
||||||
|
original_response=response,
|
||||||
|
additional_args={"complete_input_dict": data},
|
||||||
|
)
|
||||||
|
## RESPONSE OBJECT
|
||||||
|
completion_response = json.loads(response)
|
||||||
|
try:
|
||||||
|
completion_response_choices = completion_response[0]
|
||||||
|
completion_output = ""
|
||||||
|
if "generation" in completion_response_choices:
|
||||||
|
completion_output += completion_response_choices["generation"]
|
||||||
|
elif "generated_text" in completion_response_choices:
|
||||||
|
completion_output += completion_response_choices["generated_text"]
|
||||||
|
|
||||||
|
# check if the prompt template is part of output, if so - filter it out
|
||||||
|
if completion_output.startswith(data["inputs"]) and "<s>" in data["inputs"]:
|
||||||
|
completion_output = completion_output.replace(data["inputs"], "", 1)
|
||||||
|
|
||||||
|
model_response["choices"][0]["message"]["content"] = completion_output
|
||||||
|
except:
|
||||||
|
raise SagemakerError(
|
||||||
|
message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}",
|
||||||
|
status_code=500,
|
||||||
|
)
|
||||||
|
|
||||||
|
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||||
|
prompt_tokens = len(encoding.encode(data["inputs"]))
|
||||||
|
completion_tokens = len(
|
||||||
|
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
||||||
|
)
|
||||||
|
|
||||||
|
model_response["created"] = int(time.time())
|
||||||
|
model_response["model"] = model
|
||||||
|
usage = Usage(
|
||||||
|
prompt_tokens=prompt_tokens,
|
||||||
|
completion_tokens=completion_tokens,
|
||||||
|
total_tokens=prompt_tokens + completion_tokens,
|
||||||
|
)
|
||||||
|
model_response.usage = usage
|
||||||
|
return model_response
|
||||||
|
|
||||||
|
|
||||||
def embedding(
|
def embedding(
|
||||||
|
|
|
@ -264,6 +264,7 @@ async def acompletion(
|
||||||
or custom_llm_provider == "ollama"
|
or custom_llm_provider == "ollama"
|
||||||
or custom_llm_provider == "ollama_chat"
|
or custom_llm_provider == "ollama_chat"
|
||||||
or custom_llm_provider == "vertex_ai"
|
or custom_llm_provider == "vertex_ai"
|
||||||
|
or custom_llm_provider == "sagemaker"
|
||||||
or custom_llm_provider in litellm.openai_compatible_providers
|
or custom_llm_provider in litellm.openai_compatible_providers
|
||||||
): # currently implemented aiohttp calls for just azure, openai, hf, ollama, vertex ai soon all.
|
): # currently implemented aiohttp calls for just azure, openai, hf, ollama, vertex ai soon all.
|
||||||
init_response = await loop.run_in_executor(None, func_with_context)
|
init_response = await loop.run_in_executor(None, func_with_context)
|
||||||
|
@ -1553,6 +1554,7 @@ def completion(
|
||||||
logger_fn=logger_fn,
|
logger_fn=logger_fn,
|
||||||
encoding=encoding,
|
encoding=encoding,
|
||||||
logging_obj=logging,
|
logging_obj=logging,
|
||||||
|
acompletion=acompletion,
|
||||||
)
|
)
|
||||||
if (
|
if (
|
||||||
"stream" in optional_params and optional_params["stream"] == True
|
"stream" in optional_params and optional_params["stream"] == True
|
||||||
|
|
|
@ -201,6 +201,22 @@ async def test_hf_completion_tgi():
|
||||||
# test_get_cloudflare_response_streaming()
|
# test_get_cloudflare_response_streaming()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_completion_sagemaker():
|
||||||
|
# litellm.set_verbose=True
|
||||||
|
try:
|
||||||
|
response = await acompletion(
|
||||||
|
model="sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4",
|
||||||
|
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
||||||
|
)
|
||||||
|
# Add any assertions here to check the response
|
||||||
|
print(response)
|
||||||
|
except litellm.Timeout as e:
|
||||||
|
pass
|
||||||
|
except Exception as e:
|
||||||
|
pytest.fail(f"Error occurred: {e}")
|
||||||
|
|
||||||
|
|
||||||
def test_get_response_streaming():
|
def test_get_response_streaming():
|
||||||
import asyncio
|
import asyncio
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue