(feat) /batches Add support for using /batches endpoints in OAI format (#7402)

* run azure testing on ci/cd

* update docs on azure batches endpoints

* add input azure.jsonl

* refactor - use separate file for batches endpoints

* fixes for passing custom llm provider to /batch endpoints

* pass custom llm provider to files endpoints

* update azure batches doc

* add info for azure batches api

* update batches endpoints

* use simple helper for raising proxy exception

* update config.yml

* fix imports

* update tests

* use existing settings

* update env var used

* update configs

* update config.yml

* update ft testing
This commit is contained in:
Ishaan Jaff 2024-12-24 16:58:05 -08:00 committed by GitHub
parent fe43403359
commit 47e12802df
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
17 changed files with 718 additions and 464 deletions

View file

@ -104,13 +104,7 @@ def generate_feedback_box():
from collections import defaultdict
import litellm
from litellm import (
CancelBatchRequest,
CreateBatchRequest,
ListBatchRequest,
RetrieveBatchRequest,
Router,
)
from litellm import Router
from litellm._logging import verbose_proxy_logger, verbose_router_logger
from litellm.caching.caching import DualCache, RedisCache
from litellm.exceptions import RejectedRequestError
@ -137,6 +131,7 @@ from litellm.proxy.auth.user_api_key_auth import (
user_api_key_auth,
user_api_key_auth_websocket,
)
from litellm.proxy.batches_endpoints.endpoints import router as batches_router
## Import All Misc routes here ##
from litellm.proxy.caching_routes import router as caching_router
@ -208,7 +203,6 @@ from litellm.proxy.management_endpoints.team_endpoints import router as team_rou
from litellm.proxy.management_endpoints.team_endpoints import update_team
from litellm.proxy.management_endpoints.ui_sso import router as ui_sso_router
from litellm.proxy.management_helpers.audit_logs import create_audit_log_for_update
from litellm.proxy.openai_files_endpoints.files_endpoints import is_known_model
from litellm.proxy.openai_files_endpoints.files_endpoints import (
router as openai_files_router,
)
@ -5095,377 +5089,6 @@ async def run_thread(
)
######################################################################
# /v1/batches Endpoints
######################################################################
@router.post(
"/{provider}/v1/batches",
dependencies=[Depends(user_api_key_auth)],
tags=["batch"],
)
@router.post(
"/v1/batches",
dependencies=[Depends(user_api_key_auth)],
tags=["batch"],
)
@router.post(
"/batches",
dependencies=[Depends(user_api_key_auth)],
tags=["batch"],
)
async def create_batch(
request: Request,
fastapi_response: Response,
provider: Optional[str] = None,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
Create large batches of API requests for asynchronous processing.
This is the equivalent of POST https://api.openai.com/v1/batch
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch
Example Curl
```
curl http://localhost:4000/v1/batches \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"input_file_id": "file-abc123",
"endpoint": "/v1/chat/completions",
"completion_window": "24h"
}'
```
"""
global proxy_logging_obj
data: Dict = {}
try:
body = await request.body()
body_str = body.decode()
try:
data = ast.literal_eval(body_str)
except Exception:
data = json.loads(body_str)
verbose_proxy_logger.debug(
"Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)),
)
# Include original request and headers in the data
data = await add_litellm_data_to_request(
data=data,
request=request,
general_settings=general_settings,
user_api_key_dict=user_api_key_dict,
version=version,
proxy_config=proxy_config,
)
## check if model is a loadbalanced model
router_model: Optional[str] = None
is_router_model = False
if litellm.enable_loadbalancing_on_batch_endpoints is True:
router_model = data.get("model", None)
is_router_model = is_known_model(model=router_model, llm_router=llm_router)
_create_batch_data = CreateBatchRequest(**data)
custom_llm_provider = provider or _create_batch_data.pop("custom_llm_provider", None) # type: ignore
if (
litellm.enable_loadbalancing_on_batch_endpoints is True
and is_router_model
and router_model is not None
):
if llm_router is None:
raise HTTPException(
status_code=500,
detail={
"error": "LLM Router not initialized. Ensure models added to proxy."
},
)
response = await llm_router.acreate_batch(**_create_batch_data) # type: ignore
else:
if custom_llm_provider is None:
custom_llm_provider = "openai"
response = await litellm.acreate_batch(
custom_llm_provider=custom_llm_provider, **_create_batch_data # type: ignore
)
### ALERTING ###
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
fastapi_response.headers.update(
get_custom_headers(
user_api_key_dict=user_api_key_dict,
model_id=model_id,
cache_key=cache_key,
api_base=api_base,
version=version,
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
request_data=data,
)
)
return response
except Exception as e:
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
verbose_proxy_logger.exception(
"litellm.proxy.proxy_server.create_batch(): Exception occured - {}".format(
str(e)
)
)
verbose_proxy_logger.debug(traceback.format_exc())
if isinstance(e, HTTPException):
raise ProxyException(
message=getattr(e, "message", str(e.detail)),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
)
else:
error_msg = f"{str(e)}"
raise ProxyException(
message=getattr(e, "message", error_msg),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", 500),
)
@router.get(
"/{provider}/v1/batches/{batch_id:path}",
dependencies=[Depends(user_api_key_auth)],
tags=["batch"],
)
@router.get(
"/v1/batches/{batch_id:path}",
dependencies=[Depends(user_api_key_auth)],
tags=["batch"],
)
@router.get(
"/batches/{batch_id:path}",
dependencies=[Depends(user_api_key_auth)],
tags=["batch"],
)
async def retrieve_batch(
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
provider: Optional[str] = None,
batch_id: str = Path(
title="Batch ID to retrieve", description="The ID of the batch to retrieve"
),
):
"""
Retrieves a batch.
This is the equivalent of GET https://api.openai.com/v1/batches/{batch_id}
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/retrieve
Example Curl
```
curl http://localhost:4000/v1/batches/batch_abc123 \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
```
"""
global proxy_logging_obj
data: Dict = {}
try:
## check if model is a loadbalanced model
_retrieve_batch_request = RetrieveBatchRequest(
batch_id=batch_id,
)
if litellm.enable_loadbalancing_on_batch_endpoints is True:
if llm_router is None:
raise HTTPException(
status_code=500,
detail={
"error": "LLM Router not initialized. Ensure models added to proxy."
},
)
response = await llm_router.aretrieve_batch(**_retrieve_batch_request) # type: ignore
else:
if provider is None:
provider = "openai"
response = await litellm.aretrieve_batch(
custom_llm_provider=provider, **_retrieve_batch_request # type: ignore
)
### ALERTING ###
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
fastapi_response.headers.update(
get_custom_headers(
user_api_key_dict=user_api_key_dict,
model_id=model_id,
cache_key=cache_key,
api_base=api_base,
version=version,
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
request_data=data,
)
)
return response
except Exception as e:
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
verbose_proxy_logger.exception(
"litellm.proxy.proxy_server.retrieve_batch(): Exception occured - {}".format(
str(e)
)
)
verbose_proxy_logger.debug(traceback.format_exc())
if isinstance(e, HTTPException):
raise ProxyException(
message=getattr(e, "message", str(e.detail)),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
)
else:
traceback.format_exc()
error_msg = f"{str(e)}"
raise ProxyException(
message=getattr(e, "message", error_msg),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", 500),
)
@router.get(
"/{provider}/v1/batches",
dependencies=[Depends(user_api_key_auth)],
tags=["batch"],
)
@router.get(
"/v1/batches",
dependencies=[Depends(user_api_key_auth)],
tags=["batch"],
)
@router.get(
"/batches",
dependencies=[Depends(user_api_key_auth)],
tags=["batch"],
)
async def list_batches(
fastapi_response: Response,
provider: Optional[str] = None,
limit: Optional[int] = None,
after: Optional[str] = None,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
Lists
This is the equivalent of GET https://api.openai.com/v1/batches/
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/list
Example Curl
```
curl http://localhost:4000/v1/batches?limit=2 \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
```
"""
global proxy_logging_obj
verbose_proxy_logger.debug("GET /v1/batches after={} limit={}".format(after, limit))
try:
if provider is None:
provider = "openai"
response = await litellm.alist_batches(
custom_llm_provider=provider, # type: ignore
after=after,
limit=limit,
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
fastapi_response.headers.update(
get_custom_headers(
user_api_key_dict=user_api_key_dict,
model_id=model_id,
cache_key=cache_key,
api_base=api_base,
version=version,
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
)
)
return response
except Exception as e:
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict,
original_exception=e,
request_data={"after": after, "limit": limit},
)
verbose_proxy_logger.error(
"litellm.proxy.proxy_server.retrieve_batch(): Exception occured - {}".format(
str(e)
)
)
verbose_proxy_logger.debug(traceback.format_exc())
if isinstance(e, HTTPException):
raise ProxyException(
message=getattr(e, "message", str(e.detail)),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
)
else:
traceback.format_exc()
error_msg = f"{str(e)}"
raise ProxyException(
message=getattr(e, "message", error_msg),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", 500),
)
######################################################################
# END OF /v1/batches Endpoints Implementation
######################################################################
@router.post(
"/v1/moderations",
dependencies=[Depends(user_api_key_auth)],
@ -9203,6 +8826,7 @@ def cleanup_router_config_variables():
app.include_router(router)
app.include_router(batches_router)
app.include_router(rerank_router)
app.include_router(fine_tuning_router)
app.include_router(vertex_router)