Added the new acompletion parameters based on CompletionRequest attributes

This commit is contained in:
Mateo Cámara 2024-01-09 12:05:31 +01:00
parent 178a57492b
commit 48b2f69c93

View file

@ -118,29 +118,37 @@ class Completions():
@client
async def acompletion(
model: str,
messages: List = [],
functions: Optional[List] = None,
function_call: Optional[str] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
n: Optional[int] = None,
stream: Optional[bool] = None,
stop=None,
max_tokens: Optional[int] = None,
presence_penalty: Optional[float] = None,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[Dict] = None,
user: Optional[str] = None,
metadata: Optional[Dict] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
api_key: Optional[str] = None,
model_list: Optional[List] = None,
mock_response: Optional[str] = None,
force_timeout: Optional[int] = None,
custom_llm_provider: Optional[str] = None,
**kwargs,
model: str,
# Optional OpenAI params: see https://platform.openai.com/docs/api-reference/chat/create
messages: List = [],
functions: Optional[List] = None,
function_call: Optional[str] = None,
timeout: Optional[Union[float, int]] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
n: Optional[int] = None,
stream: Optional[bool] = None,
stop=None,
max_tokens: Optional[float] = None,
presence_penalty: Optional[float] = None,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[dict] = None,
user: Optional[str] = None,
# openai v1.0+ new params
response_format: Optional[dict] = None,
seed: Optional[int] = None,
tools: Optional[List] = None,
tool_choice: Optional[str] = None,
logprobs: Optional[bool] = None,
top_logprobs: Optional[int] = None,
deployment_id=None,
# set api_base, api_version, api_key
base_url: Optional[str] = None,
api_version: Optional[str] = None,
api_key: Optional[str] = None,
model_list: Optional[list] = None, # pass in a list of api_base,keys, etc.
# Optional liteLLM function params
**kwargs,
):
"""
Asynchronously executes a litellm.completion() call for any of litellm supported llms (example gpt-4, gpt-3.5-turbo, claude-2, command-nightly)
@ -187,24 +195,28 @@ async def acompletion(
"messages": messages,
"functions": functions,
"function_call": function_call,
"timeout": timeout,
"temperature": temperature,
"top_p": top_p,
"n": n,
"stream": stream,
"stop": stop,
"stop": stop,
"max_tokens": max_tokens,
"presence_penalty": presence_penalty,
"frequency_penalty": frequency_penalty,
"logit_bias": logit_bias,
"user": user,
"metadata": metadata,
"api_base": api_base,
"response_format": response_format,
"seed": seed,
"tools": tools,
"tool_choice": tool_choice,
"logprobs": logprobs,
"top_logprobs": top_logprobs,
"deployment_id": deployment_id,
"base_url": base_url,
"api_version": api_version,
"api_key": api_key,
"model_list": model_list,
"mock_response": mock_response,
"force_timeout": force_timeout,
"custom_llm_provider": custom_llm_provider,
"acompletion": True # assuming this is a required parameter
}
try:
@ -215,7 +227,7 @@ async def acompletion(
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
_, custom_llm_provider, _, _ = get_llm_provider(model=model, api_base=completion_kwargs.get("api_base", None))
_, custom_llm_provider, _, _ = get_llm_provider(model=model, api_base=completion_kwargs.get("base_url", None))
if (custom_llm_provider == "openai"
or custom_llm_provider == "azure"