mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
fix(utils.py): fix streaming to not return usage dict
Fixes https://github.com/BerriAI/litellm/issues/3237
This commit is contained in:
parent
70c98617da
commit
48c2c3d78a
24 changed files with 107 additions and 83 deletions
|
@ -16,11 +16,11 @@ repos:
|
|||
name: Check if files match
|
||||
entry: python3 ci_cd/check_files_match.py
|
||||
language: system
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: mypy
|
||||
name: mypy
|
||||
entry: python3 -m mypy --ignore-missing-imports
|
||||
language: system
|
||||
types: [python]
|
||||
files: ^litellm/
|
||||
# - repo: local
|
||||
# hooks:
|
||||
# - id: mypy
|
||||
# name: mypy
|
||||
# entry: python3 -m mypy --ignore-missing-imports
|
||||
# language: system
|
||||
# types: [python]
|
||||
# files: ^litellm/
|
|
@ -298,7 +298,7 @@ def completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
|
|
|
@ -137,7 +137,8 @@ class AnthropicTextCompletion(BaseLLM):
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
|
||||
setattr(model_response, "usage", usage)
|
||||
|
||||
return model_response
|
||||
|
||||
|
|
|
@ -55,9 +55,11 @@ def completion(
|
|||
"inputs": prompt,
|
||||
"prompt": prompt,
|
||||
"parameters": optional_params,
|
||||
"stream": True
|
||||
if "stream" in optional_params and optional_params["stream"] == True
|
||||
else False,
|
||||
"stream": (
|
||||
True
|
||||
if "stream" in optional_params and optional_params["stream"] == True
|
||||
else False
|
||||
),
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
|
@ -71,9 +73,11 @@ def completion(
|
|||
completion_url_fragment_1 + model + completion_url_fragment_2,
|
||||
headers=headers,
|
||||
data=json.dumps(data),
|
||||
stream=True
|
||||
if "stream" in optional_params and optional_params["stream"] == True
|
||||
else False,
|
||||
stream=(
|
||||
True
|
||||
if "stream" in optional_params and optional_params["stream"] == True
|
||||
else False
|
||||
),
|
||||
)
|
||||
if "text/event-stream" in response.headers["Content-Type"] or (
|
||||
"stream" in optional_params and optional_params["stream"] == True
|
||||
|
@ -102,28 +106,28 @@ def completion(
|
|||
and "data" in completion_response["model_output"]
|
||||
and isinstance(completion_response["model_output"]["data"], list)
|
||||
):
|
||||
model_response["choices"][0]["message"][
|
||||
"content"
|
||||
] = completion_response["model_output"]["data"][0]
|
||||
model_response["choices"][0]["message"]["content"] = (
|
||||
completion_response["model_output"]["data"][0]
|
||||
)
|
||||
elif isinstance(completion_response["model_output"], str):
|
||||
model_response["choices"][0]["message"][
|
||||
"content"
|
||||
] = completion_response["model_output"]
|
||||
model_response["choices"][0]["message"]["content"] = (
|
||||
completion_response["model_output"]
|
||||
)
|
||||
elif "completion" in completion_response and isinstance(
|
||||
completion_response["completion"], str
|
||||
):
|
||||
model_response["choices"][0]["message"][
|
||||
"content"
|
||||
] = completion_response["completion"]
|
||||
model_response["choices"][0]["message"]["content"] = (
|
||||
completion_response["completion"]
|
||||
)
|
||||
elif isinstance(completion_response, list) and len(completion_response) > 0:
|
||||
if "generated_text" not in completion_response:
|
||||
raise BasetenError(
|
||||
message=f"Unable to parse response. Original response: {response.text}",
|
||||
status_code=response.status_code,
|
||||
)
|
||||
model_response["choices"][0]["message"][
|
||||
"content"
|
||||
] = completion_response[0]["generated_text"]
|
||||
model_response["choices"][0]["message"]["content"] = (
|
||||
completion_response[0]["generated_text"]
|
||||
)
|
||||
## GETTING LOGPROBS
|
||||
if (
|
||||
"details" in completion_response[0]
|
||||
|
@ -155,7 +159,8 @@ def completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
|
|
|
@ -1028,7 +1028,7 @@ def completion(
|
|||
total_tokens=response_body["usage"]["input_tokens"]
|
||||
+ response_body["usage"]["output_tokens"],
|
||||
)
|
||||
model_response.usage = _usage
|
||||
setattr(model_response, "usage", _usage)
|
||||
else:
|
||||
outputText = response_body["completion"]
|
||||
model_response["finish_reason"] = response_body["stop_reason"]
|
||||
|
@ -1071,8 +1071,10 @@ def completion(
|
|||
status_code=response_metadata.get("HTTPStatusCode", 500),
|
||||
)
|
||||
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
if getattr(model_response.usage, "total_tokens", None) is None:
|
||||
## CALCULATING USAGE - bedrock charges on time, not tokens - have some mapping of cost here.
|
||||
if not hasattr(model_response, "usage"):
|
||||
setattr(model_response, "usage", Usage())
|
||||
if getattr(model_response.usage, "total_tokens", None) is None: # type: ignore
|
||||
prompt_tokens = response_metadata.get(
|
||||
"x-amzn-bedrock-input-token-count", len(encoding.encode(prompt))
|
||||
)
|
||||
|
@ -1089,7 +1091,7 @@ def completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
|
||||
model_response["created"] = int(time.time())
|
||||
model_response["model"] = model
|
||||
|
|
|
@ -167,7 +167,7 @@ def completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
|
|
|
@ -237,7 +237,7 @@ def completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
|
|
|
@ -305,5 +305,5 @@ def completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
|
|
@ -311,7 +311,7 @@ def completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
|
|
|
@ -152,9 +152,9 @@ def completion(
|
|||
else:
|
||||
try:
|
||||
if len(completion_response["answer"]) > 0:
|
||||
model_response["choices"][0]["message"][
|
||||
"content"
|
||||
] = completion_response["answer"]
|
||||
model_response["choices"][0]["message"]["content"] = (
|
||||
completion_response["answer"]
|
||||
)
|
||||
except Exception as e:
|
||||
raise MaritalkError(
|
||||
message=response.text, status_code=response.status_code
|
||||
|
@ -174,7 +174,7 @@ def completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
|
|
|
@ -185,9 +185,9 @@ def completion(
|
|||
else:
|
||||
try:
|
||||
if len(completion_response["generated_text"]) > 0:
|
||||
model_response["choices"][0]["message"][
|
||||
"content"
|
||||
] = completion_response["generated_text"]
|
||||
model_response["choices"][0]["message"]["content"] = (
|
||||
completion_response["generated_text"]
|
||||
)
|
||||
except:
|
||||
raise NLPCloudError(
|
||||
message=json.dumps(completion_response),
|
||||
|
@ -205,7 +205,7 @@ def completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
|
|
|
@ -99,9 +99,9 @@ def completion(
|
|||
)
|
||||
else:
|
||||
try:
|
||||
model_response["choices"][0]["message"][
|
||||
"content"
|
||||
] = completion_response["choices"][0]["message"]["content"]
|
||||
model_response["choices"][0]["message"]["content"] = (
|
||||
completion_response["choices"][0]["message"]["content"]
|
||||
)
|
||||
except:
|
||||
raise OobaboogaError(
|
||||
message=json.dumps(completion_response),
|
||||
|
@ -115,7 +115,7 @@ def completion(
|
|||
completion_tokens=completion_response["usage"]["completion_tokens"],
|
||||
total_tokens=completion_response["usage"]["total_tokens"],
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
|
|
|
@ -223,7 +223,7 @@ class OpenAITextCompletionConfig:
|
|||
model_response_object.choices = choice_list
|
||||
|
||||
if "usage" in response_object:
|
||||
model_response_object.usage = response_object["usage"]
|
||||
setattr(model_response_object, "usage", response_object["usage"])
|
||||
|
||||
if "id" in response_object:
|
||||
model_response_object.id = response_object["id"]
|
||||
|
|
|
@ -191,7 +191,7 @@ def completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
|
|
|
@ -41,9 +41,9 @@ class PetalsConfig:
|
|||
"""
|
||||
|
||||
max_length: Optional[int] = None
|
||||
max_new_tokens: Optional[
|
||||
int
|
||||
] = litellm.max_tokens # petals requires max tokens to be set
|
||||
max_new_tokens: Optional[int] = (
|
||||
litellm.max_tokens
|
||||
) # petals requires max tokens to be set
|
||||
do_sample: Optional[bool] = None
|
||||
temperature: Optional[float] = None
|
||||
top_k: Optional[int] = None
|
||||
|
@ -203,7 +203,7 @@ def completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
|
|
|
@ -345,7 +345,7 @@ def completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
|
|
|
@ -399,7 +399,7 @@ def completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
|
@ -617,7 +617,7 @@ async def async_completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
Deprecated. We now do together ai calls via the openai client.
|
||||
Reference: https://docs.together.ai/docs/openai-api-compatibility
|
||||
"""
|
||||
|
||||
import os, types
|
||||
import json
|
||||
from enum import Enum
|
||||
|
@ -225,7 +226,7 @@ def completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
|
|
|
@ -789,7 +789,7 @@ def completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
except Exception as e:
|
||||
raise VertexAIError(status_code=500, message=str(e))
|
||||
|
@ -996,7 +996,7 @@ async def async_completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
except Exception as e:
|
||||
raise VertexAIError(status_code=500, message=str(e))
|
||||
|
|
|
@ -349,7 +349,7 @@ def completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
except Exception as e:
|
||||
raise VertexAIError(status_code=500, message=str(e))
|
||||
|
@ -422,7 +422,7 @@ async def async_completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
|
|
|
@ -104,7 +104,7 @@ def completion(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
|
@ -186,7 +186,7 @@ def batch_completions(
|
|||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
setattr(model_response, "usage", usage)
|
||||
final_outputs.append(model_response)
|
||||
return final_outputs
|
||||
|
||||
|
|
|
@ -407,8 +407,10 @@ def mock_completion(
|
|||
model_response["created"] = int(time.time())
|
||||
model_response["model"] = model
|
||||
|
||||
model_response.usage = Usage(
|
||||
prompt_tokens=10, completion_tokens=20, total_tokens=30
|
||||
setattr(
|
||||
model_response,
|
||||
"usage",
|
||||
Usage(prompt_tokens=10, completion_tokens=20, total_tokens=30),
|
||||
)
|
||||
|
||||
try:
|
||||
|
@ -652,6 +654,7 @@ def completion(
|
|||
model
|
||||
] # update the model to the actual value if an alias has been passed in
|
||||
model_response = ModelResponse()
|
||||
setattr(model_response, "usage", litellm.Usage())
|
||||
if (
|
||||
kwargs.get("azure", False) == True
|
||||
): # don't remove flag check, to remain backwards compatible for repos like Codium
|
||||
|
|
|
@ -61,6 +61,7 @@ def validate_first_format(chunk):
|
|||
assert isinstance(chunk["created"], int), "'created' should be an integer."
|
||||
assert isinstance(chunk["model"], str), "'model' should be a string."
|
||||
assert isinstance(chunk["choices"], list), "'choices' should be a list."
|
||||
assert not hasattr(chunk, "usage"), "Chunk cannot contain usage"
|
||||
|
||||
for choice in chunk["choices"]:
|
||||
assert isinstance(choice["index"], int), "'index' should be an integer."
|
||||
|
@ -90,6 +91,7 @@ def validate_second_format(chunk):
|
|||
assert isinstance(chunk["created"], int), "'created' should be an integer."
|
||||
assert isinstance(chunk["model"], str), "'model' should be a string."
|
||||
assert isinstance(chunk["choices"], list), "'choices' should be a list."
|
||||
assert not hasattr(chunk, "usage"), "Chunk cannot contain usage"
|
||||
|
||||
for choice in chunk["choices"]:
|
||||
assert isinstance(choice["index"], int), "'index' should be an integer."
|
||||
|
@ -127,6 +129,7 @@ def validate_last_format(chunk):
|
|||
assert isinstance(chunk["created"], int), "'created' should be an integer."
|
||||
assert isinstance(chunk["model"], str), "'model' should be a string."
|
||||
assert isinstance(chunk["choices"], list), "'choices' should be a list."
|
||||
assert not hasattr(chunk, "usage"), "Chunk cannot contain usage"
|
||||
|
||||
for choice in chunk["choices"]:
|
||||
assert isinstance(choice["index"], int), "'index' should be an integer."
|
||||
|
|
|
@ -529,9 +529,6 @@ class ModelResponse(OpenAIObject):
|
|||
backend changes have been made that might impact determinism.
|
||||
"""
|
||||
|
||||
usage: Optional[Usage] = None
|
||||
"""Usage statistics for the completion request."""
|
||||
|
||||
_hidden_params: dict = {}
|
||||
|
||||
def __init__(
|
||||
|
@ -586,20 +583,27 @@ class ModelResponse(OpenAIObject):
|
|||
else:
|
||||
created = created
|
||||
model = model
|
||||
if usage:
|
||||
if usage is not None:
|
||||
usage = usage
|
||||
else:
|
||||
elif stream is None or stream == False:
|
||||
usage = Usage()
|
||||
if hidden_params:
|
||||
self._hidden_params = hidden_params
|
||||
|
||||
init_values = {
|
||||
"id": id,
|
||||
"choices": choices,
|
||||
"created": created,
|
||||
"model": model,
|
||||
"object": object,
|
||||
"system_fingerprint": system_fingerprint,
|
||||
}
|
||||
|
||||
if usage is not None:
|
||||
init_values["usage"] = usage
|
||||
|
||||
super().__init__(
|
||||
id=id,
|
||||
choices=choices,
|
||||
created=created,
|
||||
model=model,
|
||||
object=object,
|
||||
system_fingerprint=system_fingerprint,
|
||||
usage=usage,
|
||||
**init_values,
|
||||
**params,
|
||||
)
|
||||
|
||||
|
@ -6852,10 +6856,14 @@ async def convert_to_streaming_response_async(response_object: Optional[dict] =
|
|||
model_response_object.choices = choice_list
|
||||
|
||||
if "usage" in response_object and response_object["usage"] is not None:
|
||||
model_response_object.usage = Usage(
|
||||
completion_tokens=response_object["usage"].get("completion_tokens", 0),
|
||||
prompt_tokens=response_object["usage"].get("prompt_tokens", 0),
|
||||
total_tokens=response_object["usage"].get("total_tokens", 0),
|
||||
setattr(
|
||||
model_response_object,
|
||||
"usage",
|
||||
Usage(
|
||||
completion_tokens=response_object["usage"].get("completion_tokens", 0),
|
||||
prompt_tokens=response_object["usage"].get("prompt_tokens", 0),
|
||||
total_tokens=response_object["usage"].get("total_tokens", 0),
|
||||
),
|
||||
)
|
||||
|
||||
if "id" in response_object:
|
||||
|
@ -10042,6 +10050,7 @@ class CustomStreamWrapper:
|
|||
"content" in completion_obj
|
||||
and isinstance(completion_obj["content"], str)
|
||||
and len(completion_obj["content"]) == 0
|
||||
and hasattr(model_response, "usage")
|
||||
and hasattr(model_response.usage, "prompt_tokens")
|
||||
):
|
||||
if self.sent_first_chunk == False:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue