mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
refactor: add black formatting
This commit is contained in:
parent
b87d630b0a
commit
4905929de3
156 changed files with 19723 additions and 10869 deletions
|
@ -8,17 +8,21 @@ import litellm
|
|||
from litellm.utils import ModelResponse, Choices, Message, Usage
|
||||
import httpx
|
||||
|
||||
|
||||
class AlephAlphaError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = httpx.Request(method="POST", url="https://api.aleph-alpha.com/complete")
|
||||
self.request = httpx.Request(
|
||||
method="POST", url="https://api.aleph-alpha.com/complete"
|
||||
)
|
||||
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
class AlephAlphaConfig():
|
||||
|
||||
class AlephAlphaConfig:
|
||||
"""
|
||||
Reference: https://docs.aleph-alpha.com/api/complete/
|
||||
|
||||
|
@ -42,13 +46,13 @@ class AlephAlphaConfig():
|
|||
|
||||
- `repetition_penalties_include_prompt`, `repetition_penalties_include_completion`, `use_multiplicative_presence_penalty`,`use_multiplicative_frequency_penalty`,`use_multiplicative_sequence_penalty` (boolean, nullable; default value: false): Various settings that adjust how the repetition penalties are applied.
|
||||
|
||||
- `penalty_bias` (string, nullable): Text used in addition to the penalized tokens for repetition penalties.
|
||||
- `penalty_bias` (string, nullable): Text used in addition to the penalized tokens for repetition penalties.
|
||||
|
||||
- `penalty_exceptions` (string[], nullable): Strings that may be generated without penalty.
|
||||
|
||||
- `penalty_exceptions_include_stop_sequences` (boolean, nullable; default value: true): Include all stop_sequences in penalty_exceptions.
|
||||
|
||||
- `best_of` (integer, nullable; default value: 1): The number of completions will be generated on the server side.
|
||||
- `best_of` (integer, nullable; default value: 1): The number of completions will be generated on the server side.
|
||||
|
||||
- `n` (integer, nullable; default value: 1): The number of completions to return.
|
||||
|
||||
|
@ -68,87 +72,101 @@ class AlephAlphaConfig():
|
|||
|
||||
- `completion_bias_inclusion_first_token_only`, `completion_bias_exclusion_first_token_only` (boolean; default value: false): Consider only the first token for the completion_bias_inclusion/exclusion.
|
||||
|
||||
- `contextual_control_threshold` (number, nullable): Control over how similar tokens are controlled.
|
||||
- `contextual_control_threshold` (number, nullable): Control over how similar tokens are controlled.
|
||||
|
||||
- `control_log_additive` (boolean; default value: true): Method of applying control to attention scores.
|
||||
"""
|
||||
maximum_tokens: Optional[int]=litellm.max_tokens # aleph alpha requires max tokens
|
||||
minimum_tokens: Optional[int]=None
|
||||
echo: Optional[bool]=None
|
||||
temperature: Optional[int]=None
|
||||
top_k: Optional[int]=None
|
||||
top_p: Optional[int]=None
|
||||
presence_penalty: Optional[int]=None
|
||||
frequency_penalty: Optional[int]=None
|
||||
sequence_penalty: Optional[int]=None
|
||||
sequence_penalty_min_length: Optional[int]=None
|
||||
repetition_penalties_include_prompt: Optional[bool]=None
|
||||
repetition_penalties_include_completion: Optional[bool]=None
|
||||
use_multiplicative_presence_penalty: Optional[bool]=None
|
||||
use_multiplicative_frequency_penalty: Optional[bool]=None
|
||||
use_multiplicative_sequence_penalty: Optional[bool]=None
|
||||
penalty_bias: Optional[str]=None
|
||||
penalty_exceptions_include_stop_sequences: Optional[bool]=None
|
||||
best_of: Optional[int]=None
|
||||
n: Optional[int]=None
|
||||
logit_bias: Optional[dict]=None
|
||||
log_probs: Optional[int]=None
|
||||
stop_sequences: Optional[list]=None
|
||||
tokens: Optional[bool]=None
|
||||
raw_completion: Optional[bool]=None
|
||||
disable_optimizations: Optional[bool]=None
|
||||
completion_bias_inclusion: Optional[list]=None
|
||||
completion_bias_exclusion: Optional[list]=None
|
||||
completion_bias_inclusion_first_token_only: Optional[bool]=None
|
||||
completion_bias_exclusion_first_token_only: Optional[bool]=None
|
||||
contextual_control_threshold: Optional[int]=None
|
||||
control_log_additive: Optional[bool]=None
|
||||
|
||||
maximum_tokens: Optional[
|
||||
int
|
||||
] = litellm.max_tokens # aleph alpha requires max tokens
|
||||
minimum_tokens: Optional[int] = None
|
||||
echo: Optional[bool] = None
|
||||
temperature: Optional[int] = None
|
||||
top_k: Optional[int] = None
|
||||
top_p: Optional[int] = None
|
||||
presence_penalty: Optional[int] = None
|
||||
frequency_penalty: Optional[int] = None
|
||||
sequence_penalty: Optional[int] = None
|
||||
sequence_penalty_min_length: Optional[int] = None
|
||||
repetition_penalties_include_prompt: Optional[bool] = None
|
||||
repetition_penalties_include_completion: Optional[bool] = None
|
||||
use_multiplicative_presence_penalty: Optional[bool] = None
|
||||
use_multiplicative_frequency_penalty: Optional[bool] = None
|
||||
use_multiplicative_sequence_penalty: Optional[bool] = None
|
||||
penalty_bias: Optional[str] = None
|
||||
penalty_exceptions_include_stop_sequences: Optional[bool] = None
|
||||
best_of: Optional[int] = None
|
||||
n: Optional[int] = None
|
||||
logit_bias: Optional[dict] = None
|
||||
log_probs: Optional[int] = None
|
||||
stop_sequences: Optional[list] = None
|
||||
tokens: Optional[bool] = None
|
||||
raw_completion: Optional[bool] = None
|
||||
disable_optimizations: Optional[bool] = None
|
||||
completion_bias_inclusion: Optional[list] = None
|
||||
completion_bias_exclusion: Optional[list] = None
|
||||
completion_bias_inclusion_first_token_only: Optional[bool] = None
|
||||
completion_bias_exclusion_first_token_only: Optional[bool] = None
|
||||
contextual_control_threshold: Optional[int] = None
|
||||
control_log_additive: Optional[bool] = None
|
||||
|
||||
def __init__(self,
|
||||
maximum_tokens: Optional[int]=None,
|
||||
minimum_tokens: Optional[int]=None,
|
||||
echo: Optional[bool]=None,
|
||||
temperature: Optional[int]=None,
|
||||
top_k: Optional[int]=None,
|
||||
top_p: Optional[int]=None,
|
||||
presence_penalty: Optional[int]=None,
|
||||
frequency_penalty: Optional[int]=None,
|
||||
sequence_penalty: Optional[int]=None,
|
||||
sequence_penalty_min_length: Optional[int]=None,
|
||||
repetition_penalties_include_prompt: Optional[bool]=None,
|
||||
repetition_penalties_include_completion: Optional[bool]=None,
|
||||
use_multiplicative_presence_penalty: Optional[bool]=None,
|
||||
use_multiplicative_frequency_penalty: Optional[bool]=None,
|
||||
use_multiplicative_sequence_penalty: Optional[bool]=None,
|
||||
penalty_bias: Optional[str]=None,
|
||||
penalty_exceptions_include_stop_sequences: Optional[bool]=None,
|
||||
best_of: Optional[int]=None,
|
||||
n: Optional[int]=None,
|
||||
logit_bias: Optional[dict]=None,
|
||||
log_probs: Optional[int]=None,
|
||||
stop_sequences: Optional[list]=None,
|
||||
tokens: Optional[bool]=None,
|
||||
raw_completion: Optional[bool]=None,
|
||||
disable_optimizations: Optional[bool]=None,
|
||||
completion_bias_inclusion: Optional[list]=None,
|
||||
completion_bias_exclusion: Optional[list]=None,
|
||||
completion_bias_inclusion_first_token_only: Optional[bool]=None,
|
||||
completion_bias_exclusion_first_token_only: Optional[bool]=None,
|
||||
contextual_control_threshold: Optional[int]=None,
|
||||
control_log_additive: Optional[bool]=None) -> None:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
maximum_tokens: Optional[int] = None,
|
||||
minimum_tokens: Optional[int] = None,
|
||||
echo: Optional[bool] = None,
|
||||
temperature: Optional[int] = None,
|
||||
top_k: Optional[int] = None,
|
||||
top_p: Optional[int] = None,
|
||||
presence_penalty: Optional[int] = None,
|
||||
frequency_penalty: Optional[int] = None,
|
||||
sequence_penalty: Optional[int] = None,
|
||||
sequence_penalty_min_length: Optional[int] = None,
|
||||
repetition_penalties_include_prompt: Optional[bool] = None,
|
||||
repetition_penalties_include_completion: Optional[bool] = None,
|
||||
use_multiplicative_presence_penalty: Optional[bool] = None,
|
||||
use_multiplicative_frequency_penalty: Optional[bool] = None,
|
||||
use_multiplicative_sequence_penalty: Optional[bool] = None,
|
||||
penalty_bias: Optional[str] = None,
|
||||
penalty_exceptions_include_stop_sequences: Optional[bool] = None,
|
||||
best_of: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
logit_bias: Optional[dict] = None,
|
||||
log_probs: Optional[int] = None,
|
||||
stop_sequences: Optional[list] = None,
|
||||
tokens: Optional[bool] = None,
|
||||
raw_completion: Optional[bool] = None,
|
||||
disable_optimizations: Optional[bool] = None,
|
||||
completion_bias_inclusion: Optional[list] = None,
|
||||
completion_bias_exclusion: Optional[list] = None,
|
||||
completion_bias_inclusion_first_token_only: Optional[bool] = None,
|
||||
completion_bias_exclusion_first_token_only: Optional[bool] = None,
|
||||
contextual_control_threshold: Optional[int] = None,
|
||||
control_log_additive: Optional[bool] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != 'self' and value is not None:
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {k: v for k, v in cls.__dict__.items()
|
||||
if not k.startswith('__')
|
||||
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
|
||||
and v is not None}
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
|
||||
def validate_environment(api_key):
|
||||
|
@ -160,6 +178,7 @@ def validate_environment(api_key):
|
|||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
return headers
|
||||
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
|
@ -177,9 +196,11 @@ def completion(
|
|||
headers = validate_environment(api_key)
|
||||
|
||||
## Load Config
|
||||
config = litellm.AlephAlphaConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if k not in optional_params: # completion(top_k=3) > aleph_alpha_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
config = litellm.AlephAlphaConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > aleph_alpha_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
completion_url = api_base
|
||||
|
@ -188,21 +209,17 @@ def completion(
|
|||
if "control" in model: # follow the ###Instruction / ###Response format
|
||||
for idx, message in enumerate(messages):
|
||||
if "role" in message:
|
||||
if idx == 0: # set first message as instruction (required), let later user messages be input
|
||||
if (
|
||||
idx == 0
|
||||
): # set first message as instruction (required), let later user messages be input
|
||||
prompt += f"###Instruction: {message['content']}"
|
||||
else:
|
||||
if message["role"] == "system":
|
||||
prompt += (
|
||||
f"###Instruction: {message['content']}"
|
||||
)
|
||||
prompt += f"###Instruction: {message['content']}"
|
||||
elif message["role"] == "user":
|
||||
prompt += (
|
||||
f"###Input: {message['content']}"
|
||||
)
|
||||
prompt += f"###Input: {message['content']}"
|
||||
else:
|
||||
prompt += (
|
||||
f"###Response: {message['content']}"
|
||||
)
|
||||
prompt += f"###Response: {message['content']}"
|
||||
else:
|
||||
prompt += f"{message['content']}"
|
||||
else:
|
||||
|
@ -215,24 +232,27 @@ def completion(
|
|||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
response = requests.post(
|
||||
completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False
|
||||
completion_url,
|
||||
headers=headers,
|
||||
data=json.dumps(data),
|
||||
stream=optional_params["stream"] if "stream" in optional_params else False,
|
||||
)
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
return response.iter_lines()
|
||||
else:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
original_response=response.text,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
original_response=response.text,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response.text}")
|
||||
## RESPONSE OBJECT
|
||||
completion_response = response.json()
|
||||
|
@ -247,18 +267,23 @@ def completion(
|
|||
for idx, item in enumerate(completion_response["completions"]):
|
||||
if len(item["completion"]) > 0:
|
||||
message_obj = Message(content=item["completion"])
|
||||
else:
|
||||
else:
|
||||
message_obj = Message(content=None)
|
||||
choice_obj = Choices(finish_reason=item["finish_reason"], index=idx+1, message=message_obj)
|
||||
choice_obj = Choices(
|
||||
finish_reason=item["finish_reason"],
|
||||
index=idx + 1,
|
||||
message=message_obj,
|
||||
)
|
||||
choices_list.append(choice_obj)
|
||||
model_response["choices"] = choices_list
|
||||
except:
|
||||
raise AlephAlphaError(message=json.dumps(completion_response), status_code=response.status_code)
|
||||
raise AlephAlphaError(
|
||||
message=json.dumps(completion_response),
|
||||
status_code=response.status_code,
|
||||
)
|
||||
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = len(
|
||||
encoding.encode(prompt)
|
||||
)
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = len(encoding.encode(prompt))
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||
)
|
||||
|
@ -268,11 +293,12 @@ def completion(
|
|||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
|
||||
def embedding():
|
||||
# logic for parsing in - calling - parsing out model embedding calls
|
||||
pass
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue