refactor: add black formatting

This commit is contained in:
Krrish Dholakia 2023-12-25 14:10:38 +05:30
parent b87d630b0a
commit 4905929de3
156 changed files with 19723 additions and 10869 deletions

View file

@ -1,7 +1,13 @@
from typing import Optional, Union, Any
import types, requests
from .base import BaseLLM
from litellm.utils import ModelResponse, Choices, Message, CustomStreamWrapper, convert_to_model_response_object
from litellm.utils import (
ModelResponse,
Choices,
Message,
CustomStreamWrapper,
convert_to_model_response_object,
)
from typing import Callable, Optional
from litellm import OpenAIConfig
import litellm, json
@ -9,8 +15,15 @@ import httpx
from .custom_httpx.azure_dall_e_2 import CustomHTTPTransport, AsyncCustomHTTPTransport
from openai import AzureOpenAI, AsyncAzureOpenAI
class AzureOpenAIError(Exception):
def __init__(self, status_code, message, request: Optional[httpx.Request]=None, response: Optional[httpx.Response]=None):
def __init__(
self,
status_code,
message,
request: Optional[httpx.Request] = None,
response: Optional[httpx.Response] = None,
):
self.status_code = status_code
self.message = message
if request:
@ -20,11 +33,14 @@ class AzureOpenAIError(Exception):
if response:
self.response = response
else:
self.response = httpx.Response(status_code=status_code, request=self.request)
self.response = httpx.Response(
status_code=status_code, request=self.request
)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class AzureOpenAIConfig(OpenAIConfig):
"""
Reference: https://platform.openai.com/docs/api-reference/chat/create
@ -49,33 +65,37 @@ class AzureOpenAIConfig(OpenAIConfig):
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
"""
def __init__(self,
frequency_penalty: Optional[int] = None,
function_call: Optional[Union[str, dict]]= None,
functions: Optional[list]= None,
logit_bias: Optional[dict]= None,
max_tokens: Optional[int]= None,
n: Optional[int]= None,
presence_penalty: Optional[int]= None,
stop: Optional[Union[str,list]]=None,
temperature: Optional[int]= None,
top_p: Optional[int]= None) -> None:
super().__init__(frequency_penalty,
function_call,
functions,
logit_bias,
max_tokens,
n,
presence_penalty,
stop,
temperature,
top_p)
def __init__(
self,
frequency_penalty: Optional[int] = None,
function_call: Optional[Union[str, dict]] = None,
functions: Optional[list] = None,
logit_bias: Optional[dict] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[int] = None,
stop: Optional[Union[str, list]] = None,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
) -> None:
super().__init__(
frequency_penalty,
function_call,
functions,
logit_bias,
max_tokens,
n,
presence_penalty,
stop,
temperature,
top_p,
)
class AzureChatCompletion(BaseLLM):
def __init__(self) -> None:
super().__init__()
@ -89,49 +109,51 @@ class AzureChatCompletion(BaseLLM):
headers["Authorization"] = f"Bearer {azure_ad_token}"
return headers
def completion(self,
model: str,
messages: list,
model_response: ModelResponse,
api_key: str,
api_base: str,
api_version: str,
api_type: str,
azure_ad_token: str,
print_verbose: Callable,
timeout,
logging_obj,
optional_params,
litellm_params,
logger_fn,
acompletion: bool = False,
headers: Optional[dict]=None,
client = None,
):
def completion(
self,
model: str,
messages: list,
model_response: ModelResponse,
api_key: str,
api_base: str,
api_version: str,
api_type: str,
azure_ad_token: str,
print_verbose: Callable,
timeout,
logging_obj,
optional_params,
litellm_params,
logger_fn,
acompletion: bool = False,
headers: Optional[dict] = None,
client=None,
):
super().completion()
exception_mapping_worked = False
try:
if model is None or messages is None:
raise AzureOpenAIError(status_code=422, message=f"Missing model or messages")
raise AzureOpenAIError(
status_code=422, message=f"Missing model or messages"
)
max_retries = optional_params.pop("max_retries", 2)
### CHECK IF CLOUDFLARE AI GATEWAY ###
### if so - set the model as part of the base url
if "gateway.ai.cloudflare.com" in api_base:
### if so - set the model as part of the base url
if "gateway.ai.cloudflare.com" in api_base:
## build base url - assume api base includes resource name
if client is None:
if not api_base.endswith("/"):
if not api_base.endswith("/"):
api_base += "/"
api_base += f"{model}"
azure_client_params = {
"api_version": api_version,
"base_url": f"{api_base}",
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout
"timeout": timeout,
}
if api_key is not None:
azure_client_params["api_key"] = api_key
@ -142,26 +164,53 @@ class AzureChatCompletion(BaseLLM):
client = AsyncAzureOpenAI(**azure_client_params)
else:
client = AzureOpenAI(**azure_client_params)
data = {"model": None, "messages": messages, **optional_params}
else:
data = {
"model": None,
"messages": messages,
**optional_params
"model": model, # type: ignore
"messages": messages,
**optional_params,
}
else:
data = {
"model": model, # type: ignore
"messages": messages,
**optional_params
}
if acompletion is True:
if acompletion is True:
if optional_params.get("stream", False):
return self.async_streaming(logging_obj=logging_obj, api_base=api_base, data=data, model=model, api_key=api_key, api_version=api_version, azure_ad_token=azure_ad_token, timeout=timeout, client=client)
return self.async_streaming(
logging_obj=logging_obj,
api_base=api_base,
data=data,
model=model,
api_key=api_key,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
client=client,
)
else:
return self.acompletion(api_base=api_base, data=data, model_response=model_response, api_key=api_key, api_version=api_version, model=model, azure_ad_token=azure_ad_token, timeout=timeout, client=client, logging_obj=logging_obj)
return self.acompletion(
api_base=api_base,
data=data,
model_response=model_response,
api_key=api_key,
api_version=api_version,
model=model,
azure_ad_token=azure_ad_token,
timeout=timeout,
client=client,
logging_obj=logging_obj,
)
elif "stream" in optional_params and optional_params["stream"] == True:
return self.streaming(logging_obj=logging_obj, api_base=api_base, data=data, model=model, api_key=api_key, api_version=api_version, azure_ad_token=azure_ad_token, timeout=timeout, client=client)
return self.streaming(
logging_obj=logging_obj,
api_base=api_base,
data=data,
model=model,
api_key=api_key,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
client=client,
)
else:
## LOGGING
logging_obj.pre_call(
@ -169,16 +218,18 @@ class AzureChatCompletion(BaseLLM):
api_key=api_key,
additional_args={
"headers": {
"api_key": api_key,
"azure_ad_token": azure_ad_token
"api_key": api_key,
"azure_ad_token": azure_ad_token,
},
"api_version": api_version,
"api_base": api_base,
"complete_input_dict": data,
},
)
if not isinstance(max_retries, int):
raise AzureOpenAIError(status_code=422, message="max retries must be an int")
if not isinstance(max_retries, int):
raise AzureOpenAIError(
status_code=422, message="max retries must be an int"
)
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
@ -186,7 +237,7 @@ class AzureChatCompletion(BaseLLM):
"azure_deployment": model,
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout
"timeout": timeout,
}
if api_key is not None:
azure_client_params["api_key"] = api_key
@ -196,7 +247,7 @@ class AzureChatCompletion(BaseLLM):
azure_client = AzureOpenAI(**azure_client_params)
else:
azure_client = client
response = azure_client.chat.completions.create(**data) # type: ignore
response = azure_client.chat.completions.create(**data) # type: ignore
stringified_response = response.model_dump_json()
## LOGGING
logging_obj.post_call(
@ -209,30 +260,36 @@ class AzureChatCompletion(BaseLLM):
"api_base": api_base,
},
)
return convert_to_model_response_object(response_object=json.loads(stringified_response), model_response_object=model_response)
except AzureOpenAIError as e:
return convert_to_model_response_object(
response_object=json.loads(stringified_response),
model_response_object=model_response,
)
except AzureOpenAIError as e:
exception_mapping_worked = True
raise e
except Exception as e:
except Exception as e:
raise e
async def acompletion(self,
api_key: str,
api_version: str,
model: str,
api_base: str,
data: dict,
timeout: Any,
model_response: ModelResponse,
azure_ad_token: Optional[str]=None,
client = None, # this is the AsyncAzureOpenAI
logging_obj=None,
):
response = None
try:
async def acompletion(
self,
api_key: str,
api_version: str,
model: str,
api_base: str,
data: dict,
timeout: Any,
model_response: ModelResponse,
azure_ad_token: Optional[str] = None,
client=None, # this is the AsyncAzureOpenAI
logging_obj=None,
):
response = None
try:
max_retries = data.pop("max_retries", 2)
if not isinstance(max_retries, int):
raise AzureOpenAIError(status_code=422, message="max retries must be an int")
if not isinstance(max_retries, int):
raise AzureOpenAIError(
status_code=422, message="max retries must be an int"
)
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
@ -240,7 +297,7 @@ class AzureChatCompletion(BaseLLM):
"azure_deployment": model,
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout
"timeout": timeout,
}
if api_key is not None:
azure_client_params["api_key"] = api_key
@ -252,35 +309,46 @@ class AzureChatCompletion(BaseLLM):
azure_client = client
## LOGGING
logging_obj.pre_call(
input=data['messages'],
input=data["messages"],
api_key=azure_client.api_key,
additional_args={"headers": {"Authorization": f"Bearer {azure_client.api_key}"}, "api_base": azure_client._base_url._uri_reference, "acompletion": True, "complete_input_dict": data},
additional_args={
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
"api_base": azure_client._base_url._uri_reference,
"acompletion": True,
"complete_input_dict": data,
},
)
response = await azure_client.chat.completions.create(**data)
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response)
except AzureOpenAIError as e:
response = await azure_client.chat.completions.create(**data)
return convert_to_model_response_object(
response_object=json.loads(response.model_dump_json()),
model_response_object=model_response,
)
except AzureOpenAIError as e:
exception_mapping_worked = True
raise e
except Exception as e:
except Exception as e:
if hasattr(e, "status_code"):
raise e
else:
raise AzureOpenAIError(status_code=500, message=str(e))
def streaming(self,
logging_obj,
api_base: str,
api_key: str,
api_version: str,
data: dict,
model: str,
timeout: Any,
azure_ad_token: Optional[str]=None,
client=None,
):
def streaming(
self,
logging_obj,
api_base: str,
api_key: str,
api_version: str,
data: dict,
model: str,
timeout: Any,
azure_ad_token: Optional[str] = None,
client=None,
):
max_retries = data.pop("max_retries", 2)
if not isinstance(max_retries, int):
raise AzureOpenAIError(status_code=422, message="max retries must be an int")
if not isinstance(max_retries, int):
raise AzureOpenAIError(
status_code=422, message="max retries must be an int"
)
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
@ -288,7 +356,7 @@ class AzureChatCompletion(BaseLLM):
"azure_deployment": model,
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout
"timeout": timeout,
}
if api_key is not None:
azure_client_params["api_key"] = api_key
@ -300,25 +368,36 @@ class AzureChatCompletion(BaseLLM):
azure_client = client
## LOGGING
logging_obj.pre_call(
input=data['messages'],
input=data["messages"],
api_key=azure_client.api_key,
additional_args={"headers": {"Authorization": f"Bearer {azure_client.api_key}"}, "api_base": azure_client._base_url._uri_reference, "acompletion": True, "complete_input_dict": data},
additional_args={
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
"api_base": azure_client._base_url._uri_reference,
"acompletion": True,
"complete_input_dict": data,
},
)
response = azure_client.chat.completions.create(**data)
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="azure",logging_obj=logging_obj)
streamwrapper = CustomStreamWrapper(
completion_stream=response,
model=model,
custom_llm_provider="azure",
logging_obj=logging_obj,
)
return streamwrapper
async def async_streaming(self,
logging_obj,
api_base: str,
api_key: str,
api_version: str,
data: dict,
model: str,
timeout: Any,
azure_ad_token: Optional[str]=None,
client = None,
):
async def async_streaming(
self,
logging_obj,
api_base: str,
api_key: str,
api_version: str,
data: dict,
model: str,
timeout: Any,
azure_ad_token: Optional[str] = None,
client=None,
):
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
@ -326,39 +405,49 @@ class AzureChatCompletion(BaseLLM):
"azure_deployment": model,
"http_client": litellm.client_session,
"max_retries": data.pop("max_retries", 2),
"timeout": timeout
"timeout": timeout,
}
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
azure_client_params["azure_ad_token"] = azure_ad_token
if client is None:
azure_client = AsyncAzureOpenAI(**azure_client_params)
azure_client = AsyncAzureOpenAI(**azure_client_params)
else:
azure_client = client
## LOGGING
logging_obj.pre_call(
input=data['messages'],
input=data["messages"],
api_key=azure_client.api_key,
additional_args={"headers": {"Authorization": f"Bearer {azure_client.api_key}"}, "api_base": azure_client._base_url._uri_reference, "acompletion": True, "complete_input_dict": data},
additional_args={
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
"api_base": azure_client._base_url._uri_reference,
"acompletion": True,
"complete_input_dict": data,
},
)
response = await azure_client.chat.completions.create(**data)
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="azure",logging_obj=logging_obj)
streamwrapper = CustomStreamWrapper(
completion_stream=response,
model=model,
custom_llm_provider="azure",
logging_obj=logging_obj,
)
async for transformed_chunk in streamwrapper:
yield transformed_chunk
async def aembedding(
self,
data: dict,
model_response: ModelResponse,
self,
data: dict,
model_response: ModelResponse,
azure_client_params: dict,
api_key: str,
input: list,
api_key: str,
input: list,
client=None,
logging_obj=None
):
logging_obj=None,
):
response = None
try:
try:
if client is None:
openai_aclient = AsyncAzureOpenAI(**azure_client_params)
else:
@ -367,50 +456,53 @@ class AzureChatCompletion(BaseLLM):
stringified_response = response.model_dump_json()
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=stringified_response,
)
return convert_to_model_response_object(response_object=json.loads(stringified_response), model_response_object=model_response, response_type="embedding")
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=stringified_response,
)
return convert_to_model_response_object(
response_object=json.loads(stringified_response),
model_response_object=model_response,
response_type="embedding",
)
except Exception as e:
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=str(e),
)
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=str(e),
)
raise e
def embedding(self,
model: str,
input: list,
api_key: str,
api_base: str,
api_version: str,
timeout: float,
logging_obj=None,
model_response=None,
optional_params=None,
azure_ad_token: Optional[str]=None,
client = None,
aembedding=None,
):
def embedding(
self,
model: str,
input: list,
api_key: str,
api_base: str,
api_version: str,
timeout: float,
logging_obj=None,
model_response=None,
optional_params=None,
azure_ad_token: Optional[str] = None,
client=None,
aembedding=None,
):
super().embedding()
exception_mapping_worked = False
if self._client_session is None:
self._client_session = self.create_client_session()
try:
data = {
"model": model,
"input": input,
**optional_params
}
try:
data = {"model": model, "input": input, **optional_params}
max_retries = data.pop("max_retries", 2)
if not isinstance(max_retries, int):
raise AzureOpenAIError(status_code=422, message="max retries must be an int")
if not isinstance(max_retries, int):
raise AzureOpenAIError(
status_code=422, message="max retries must be an int"
)
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
@ -418,7 +510,7 @@ class AzureChatCompletion(BaseLLM):
"azure_deployment": model,
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout
"timeout": timeout,
}
if api_key is not None:
azure_client_params["api_key"] = api_key
@ -427,119 +519,130 @@ class AzureChatCompletion(BaseLLM):
## LOGGING
logging_obj.pre_call(
input=input,
api_key=api_key,
additional_args={
"complete_input_dict": data,
"headers": {
"api_key": api_key,
"azure_ad_token": azure_ad_token
}
},
)
input=input,
api_key=api_key,
additional_args={
"complete_input_dict": data,
"headers": {"api_key": api_key, "azure_ad_token": azure_ad_token},
},
)
if aembedding == True:
response = self.aembedding(data=data, input=input, logging_obj=logging_obj, api_key=api_key, model_response=model_response, azure_client_params=azure_client_params)
response = self.aembedding(
data=data,
input=input,
logging_obj=logging_obj,
api_key=api_key,
model_response=model_response,
azure_client_params=azure_client_params,
)
return response
if client is None:
azure_client = AzureOpenAI(**azure_client_params) # type: ignore
azure_client = AzureOpenAI(**azure_client_params) # type: ignore
else:
azure_client = client
## COMPLETION CALL
response = azure_client.embeddings.create(**data) # type: ignore
## COMPLETION CALL
response = azure_client.embeddings.create(**data) # type: ignore
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data, "api_base": api_base},
original_response=response,
)
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data, "api_base": api_base},
original_response=response,
)
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response, response_type="embedding") # type: ignore
except AzureOpenAIError as e:
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response, response_type="embedding") # type: ignore
except AzureOpenAIError as e:
exception_mapping_worked = True
raise e
except Exception as e:
if exception_mapping_worked:
except Exception as e:
if exception_mapping_worked:
raise e
else:
else:
import traceback
raise AzureOpenAIError(status_code=500, message=traceback.format_exc())
async def aimage_generation(
self,
data: dict,
model_response: ModelResponse,
self,
data: dict,
model_response: ModelResponse,
azure_client_params: dict,
api_key: str,
input: list,
api_key: str,
input: list,
client=None,
logging_obj=None
):
logging_obj=None,
):
response = None
try:
try:
if client is None:
client_session = litellm.aclient_session or httpx.AsyncClient(transport=AsyncCustomHTTPTransport(),)
openai_aclient = AsyncAzureOpenAI(http_client=client_session, **azure_client_params)
client_session = litellm.aclient_session or httpx.AsyncClient(
transport=AsyncCustomHTTPTransport(),
)
openai_aclient = AsyncAzureOpenAI(
http_client=client_session, **azure_client_params
)
else:
openai_aclient = client
response = await openai_aclient.images.generate(**data)
stringified_response = response.model_dump_json()
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=stringified_response,
)
return convert_to_model_response_object(response_object=json.loads(stringified_response), model_response_object=model_response, response_type="image_generation")
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=stringified_response,
)
return convert_to_model_response_object(
response_object=json.loads(stringified_response),
model_response_object=model_response,
response_type="image_generation",
)
except Exception as e:
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=str(e),
)
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=str(e),
)
raise e
def image_generation(self,
prompt: str,
timeout: float,
model: Optional[str]=None,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
model_response: Optional[litellm.utils.ImageResponse] = None,
azure_ad_token: Optional[str]=None,
logging_obj=None,
optional_params=None,
client=None,
aimg_generation=None,
):
def image_generation(
self,
prompt: str,
timeout: float,
model: Optional[str] = None,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
model_response: Optional[litellm.utils.ImageResponse] = None,
azure_ad_token: Optional[str] = None,
logging_obj=None,
optional_params=None,
client=None,
aimg_generation=None,
):
exception_mapping_worked = False
try:
try:
if model and len(model) > 0:
model = model
else:
model = None
data = {
"model": model,
"prompt": prompt,
**optional_params
}
data = {"model": model, "prompt": prompt, **optional_params}
max_retries = data.pop("max_retries", 2)
if not isinstance(max_retries, int):
raise AzureOpenAIError(status_code=422, message="max retries must be an int")
if not isinstance(max_retries, int):
raise AzureOpenAIError(
status_code=422, message="max retries must be an int"
)
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
"azure_endpoint": api_base,
"azure_deployment": model,
"max_retries": max_retries,
"timeout": timeout
"timeout": timeout,
}
if api_key is not None:
azure_client_params["api_key"] = api_key
@ -547,39 +650,47 @@ class AzureChatCompletion(BaseLLM):
azure_client_params["azure_ad_token"] = azure_ad_token
if aimg_generation == True:
response = self.aimage_generation(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_key=api_key, client=client, azure_client_params=azure_client_params) # type: ignore
response = self.aimage_generation(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_key=api_key, client=client, azure_client_params=azure_client_params) # type: ignore
return response
if client is None:
client_session = litellm.client_session or httpx.Client(transport=CustomHTTPTransport(),)
azure_client = AzureOpenAI(http_client=client_session, **azure_client_params) # type: ignore
client_session = litellm.client_session or httpx.Client(
transport=CustomHTTPTransport(),
)
azure_client = AzureOpenAI(http_client=client_session, **azure_client_params) # type: ignore
else:
azure_client = client
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=azure_client.api_key,
additional_args={"headers": {"Authorization": f"Bearer {azure_client.api_key}"}, "api_base": azure_client._base_url._uri_reference, "acompletion": False, "complete_input_dict": data},
additional_args={
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
"api_base": azure_client._base_url._uri_reference,
"acompletion": False,
"complete_input_dict": data,
},
)
## COMPLETION CALL
response = azure_client.images.generate(**data) # type: ignore
response = azure_client.images.generate(**data) # type: ignore
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=response,
)
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=response,
)
# return response
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response, response_type="image_generation") # type: ignore
except AzureOpenAIError as e:
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response, response_type="image_generation") # type: ignore
except AzureOpenAIError as e:
exception_mapping_worked = True
raise e
except Exception as e:
if exception_mapping_worked:
except Exception as e:
if exception_mapping_worked:
raise e
else:
else:
import traceback
raise AzureOpenAIError(status_code=500, message=traceback.format_exc())
raise AzureOpenAIError(status_code=500, message=traceback.format_exc())