refactor: add black formatting

This commit is contained in:
Krrish Dholakia 2023-12-25 14:10:38 +05:30
parent b87d630b0a
commit 4905929de3
156 changed files with 19723 additions and 10869 deletions

View file

@ -8,17 +8,22 @@ import litellm
import sys, httpx
from .prompt_templates.factory import prompt_factory, custom_prompt
class GeminiError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(method="POST", url="https://developers.generativeai.google/api/python/google/generativeai/chat")
self.request = httpx.Request(
method="POST",
url="https://developers.generativeai.google/api/python/google/generativeai/chat",
)
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class GeminiConfig():
class GeminiConfig:
"""
Reference: https://ai.google.dev/api/python/google/generativeai/GenerationConfig
@ -37,33 +42,44 @@ class GeminiConfig():
- `top_k` (int): Optional. The maximum number of tokens to consider when sampling.
"""
candidate_count: Optional[int]=None
stop_sequences: Optional[list]=None
max_output_tokens: Optional[int]=None
temperature: Optional[float]=None
top_p: Optional[float]=None
top_k: Optional[int]=None
candidate_count: Optional[int] = None
stop_sequences: Optional[list] = None
max_output_tokens: Optional[int] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
top_k: Optional[int] = None
def __init__(self,
candidate_count: Optional[int]=None,
stop_sequences: Optional[list]=None,
max_output_tokens: Optional[int]=None,
temperature: Optional[float]=None,
top_p: Optional[float]=None,
top_k: Optional[int]=None) -> None:
def __init__(
self,
candidate_count: Optional[int] = None,
stop_sequences: Optional[list] = None,
max_output_tokens: Optional[int] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
top_k: Optional[int] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != 'self' and value is not None:
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {k: v for k, v in cls.__dict__.items()
if not k.startswith('__')
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
and v is not None}
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def completion(
@ -83,42 +99,50 @@ def completion(
try:
import google.generativeai as genai
except:
raise Exception("Importing google.generativeai failed, please run 'pip install -q google-generativeai")
raise Exception(
"Importing google.generativeai failed, please run 'pip install -q google-generativeai"
)
genai.configure(api_key=api_key)
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages
)
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages,
)
else:
prompt = prompt_factory(model=model, messages=messages, custom_llm_provider="gemini")
prompt = prompt_factory(
model=model, messages=messages, custom_llm_provider="gemini"
)
## Load Config
inference_params = copy.deepcopy(optional_params)
inference_params.pop("stream", None) # palm does not support streaming, so we handle this by fake streaming in main.py
config = litellm.GeminiConfig.get_config()
for k, v in config.items():
if k not in inference_params: # completion(top_k=3) > gemini_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params.pop(
"stream", None
) # palm does not support streaming, so we handle this by fake streaming in main.py
config = litellm.GeminiConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > gemini_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={"complete_input_dict": {"inference_params": inference_params}},
)
input=prompt,
api_key="",
additional_args={"complete_input_dict": {"inference_params": inference_params}},
)
## COMPLETION CALL
try:
_model = genai.GenerativeModel(f'models/{model}')
response = _model.generate_content(contents=prompt, generation_config=genai.types.GenerationConfig(**inference_params))
try:
_model = genai.GenerativeModel(f"models/{model}")
response = _model.generate_content(
contents=prompt,
generation_config=genai.types.GenerationConfig(**inference_params),
)
except Exception as e:
raise GeminiError(
message=str(e),
@ -127,11 +151,11 @@ def completion(
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=response,
additional_args={"complete_input_dict": {}},
)
input=prompt,
api_key="",
original_response=response,
additional_args={"complete_input_dict": {}},
)
print_verbose(f"raw model_response: {response}")
## RESPONSE OBJECT
completion_response = response
@ -142,31 +166,34 @@ def completion(
message_obj = Message(content=item.content.parts[0].text)
else:
message_obj = Message(content=None)
choice_obj = Choices(index=idx+1, message=message_obj)
choice_obj = Choices(index=idx + 1, message=message_obj)
choices_list.append(choice_obj)
model_response["choices"] = choices_list
except Exception as e:
traceback.print_exc()
raise GeminiError(message=traceback.format_exc(), status_code=response.status_code)
try:
raise GeminiError(
message=traceback.format_exc(), status_code=response.status_code
)
try:
completion_response = model_response["choices"][0]["message"].get("content")
except:
raise GeminiError(status_code=400, message=f"No response received. Original response - {response}")
raise GeminiError(
status_code=400,
message=f"No response received. Original response - {response}",
)
## CALCULATING USAGE
prompt_str = ""
prompt_str = ""
for m in messages:
if isinstance(m["content"], str):
prompt_str += m["content"]
elif isinstance(m["content"], list):
for content in m["content"]:
if content["type"] == "text":
if content["type"] == "text":
prompt_str += content["text"]
prompt_tokens = len(
encoding.encode(prompt_str)
)
prompt_tokens = len(encoding.encode(prompt_str))
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
@ -174,13 +201,14 @@ def completion(
model_response["created"] = int(time.time())
model_response["model"] = "gemini/" + model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens
)
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
model_response.usage = usage
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass