refactor: add black formatting

This commit is contained in:
Krrish Dholakia 2023-12-25 14:10:38 +05:30
parent b87d630b0a
commit 4905929de3
156 changed files with 19723 additions and 10869 deletions

View file

@ -7,6 +7,7 @@ from typing import Callable, Optional
import litellm
from litellm.utils import ModelResponse, Usage
class NLPCloudError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
@ -15,7 +16,8 @@ class NLPCloudError(Exception):
self.message
) # Call the base class constructor with the parameters it needs
class NLPCloudConfig():
class NLPCloudConfig:
"""
Reference: https://docs.nlpcloud.com/#generation
@ -43,45 +45,57 @@ class NLPCloudConfig():
- `num_return_sequences` (int): Optional. The number of independently computed returned sequences.
"""
max_length: Optional[int]=None
length_no_input: Optional[bool]=None
end_sequence: Optional[str]=None
remove_end_sequence: Optional[bool]=None
remove_input: Optional[bool]=None
bad_words: Optional[list]=None
temperature: Optional[float]=None
top_p: Optional[float]=None
top_k: Optional[int]=None
repetition_penalty: Optional[float]=None
num_beams: Optional[int]=None
num_return_sequences: Optional[int]=None
max_length: Optional[int] = None
length_no_input: Optional[bool] = None
end_sequence: Optional[str] = None
remove_end_sequence: Optional[bool] = None
remove_input: Optional[bool] = None
bad_words: Optional[list] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
top_k: Optional[int] = None
repetition_penalty: Optional[float] = None
num_beams: Optional[int] = None
num_return_sequences: Optional[int] = None
def __init__(self,
max_length: Optional[int]=None,
length_no_input: Optional[bool]=None,
end_sequence: Optional[str]=None,
remove_end_sequence: Optional[bool]=None,
remove_input: Optional[bool]=None,
bad_words: Optional[list]=None,
temperature: Optional[float]=None,
top_p: Optional[float]=None,
top_k: Optional[int]=None,
repetition_penalty: Optional[float]=None,
num_beams: Optional[int]=None,
num_return_sequences: Optional[int]=None) -> None:
def __init__(
self,
max_length: Optional[int] = None,
length_no_input: Optional[bool] = None,
end_sequence: Optional[str] = None,
remove_end_sequence: Optional[bool] = None,
remove_input: Optional[bool] = None,
bad_words: Optional[list] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
top_k: Optional[int] = None,
repetition_penalty: Optional[float] = None,
num_beams: Optional[int] = None,
num_return_sequences: Optional[int] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != 'self' and value is not None:
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {k: v for k, v in cls.__dict__.items()
if not k.startswith('__')
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
and v is not None}
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def validate_environment(api_key):
@ -93,6 +107,7 @@ def validate_environment(api_key):
headers["Authorization"] = f"Token {api_key}"
return headers
def completion(
model: str,
messages: list,
@ -110,9 +125,11 @@ def completion(
headers = validate_environment(api_key)
## Load Config
config = litellm.NLPCloudConfig.get_config()
for k, v in config.items():
if k not in optional_params: # completion(top_k=3) > togetherai_config(top_k=3) <- allows for dynamic variables to be passed in
config = litellm.NLPCloudConfig.get_config()
for k, v in config.items():
if (
k not in optional_params
): # completion(top_k=3) > togetherai_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
completion_url_fragment_1 = api_base
@ -129,24 +146,31 @@ def completion(
## LOGGING
logging_obj.pre_call(
input=text,
api_key=api_key,
additional_args={"complete_input_dict": data, "headers": headers, "api_base": completion_url},
)
input=text,
api_key=api_key,
additional_args={
"complete_input_dict": data,
"headers": headers,
"api_base": completion_url,
},
)
## COMPLETION CALL
response = requests.post(
completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False
completion_url,
headers=headers,
data=json.dumps(data),
stream=optional_params["stream"] if "stream" in optional_params else False,
)
if "stream" in optional_params and optional_params["stream"] == True:
return clean_and_iterate_chunks(response)
else:
## LOGGING
logging_obj.post_call(
input=text,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
input=text,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
try:
@ -161,11 +185,16 @@ def completion(
else:
try:
if len(completion_response["generated_text"]) > 0:
model_response["choices"][0]["message"]["content"] = completion_response["generated_text"]
model_response["choices"][0]["message"][
"content"
] = completion_response["generated_text"]
except:
raise NLPCloudError(message=json.dumps(completion_response), status_code=response.status_code)
raise NLPCloudError(
message=json.dumps(completion_response),
status_code=response.status_code,
)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = completion_response["nb_input_tokens"]
completion_tokens = completion_response["nb_generated_tokens"]
@ -174,7 +203,7 @@ def completion(
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens
total_tokens=prompt_tokens + completion_tokens,
)
model_response.usage = usage
return model_response
@ -187,25 +216,27 @@ def completion(
# # Perform further processing based on your needs
# return cleaned_chunk
# for line in response.iter_lines():
# if line:
# yield process_chunk(line)
def clean_and_iterate_chunks(response):
buffer = b''
buffer = b""
for chunk in response.iter_content(chunk_size=1024):
if not chunk:
break
buffer += chunk
while b'\x00' in buffer:
buffer = buffer.replace(b'\x00', b'')
yield buffer.decode('utf-8')
buffer = b''
while b"\x00" in buffer:
buffer = buffer.replace(b"\x00", b"")
yield buffer.decode("utf-8")
buffer = b""
# No more data expected, yield any remaining data in the buffer
if buffer:
yield buffer.decode('utf-8')
yield buffer.decode("utf-8")
def embedding():
# logic for parsing in - calling - parsing out model embedding calls