mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
refactor: add black formatting
This commit is contained in:
parent
b87d630b0a
commit
4905929de3
156 changed files with 19723 additions and 10869 deletions
|
@ -4,81 +4,100 @@ import requests
|
|||
import time
|
||||
from typing import Callable, Optional
|
||||
from litellm.utils import ModelResponse, Usage
|
||||
import litellm
|
||||
import litellm
|
||||
import httpx
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
|
||||
|
||||
class ReplicateError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = httpx.Request(method="POST", url="https://api.replicate.com/v1/deployments")
|
||||
self.request = httpx.Request(
|
||||
method="POST", url="https://api.replicate.com/v1/deployments"
|
||||
)
|
||||
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
class ReplicateConfig():
|
||||
|
||||
class ReplicateConfig:
|
||||
"""
|
||||
Reference: https://replicate.com/meta/llama-2-70b-chat/api
|
||||
- `prompt` (string): The prompt to send to the model.
|
||||
|
||||
|
||||
- `system_prompt` (string): The system prompt to send to the model. This is prepended to the prompt and helps guide system behavior. Default value: `You are a helpful assistant`.
|
||||
|
||||
|
||||
- `max_new_tokens` (integer): Maximum number of tokens to generate. Typically, a word is made up of 2-3 tokens. Default value: `128`.
|
||||
|
||||
|
||||
- `min_new_tokens` (integer): Minimum number of tokens to generate. To disable, set to `-1`. A word is usually 2-3 tokens. Default value: `-1`.
|
||||
|
||||
|
||||
- `temperature` (number): Adjusts the randomness of outputs. Values greater than 1 increase randomness, 0 is deterministic, and 0.75 is a reasonable starting value. Default value: `0.75`.
|
||||
|
||||
|
||||
- `top_p` (number): During text decoding, it samples from the top `p` percentage of most likely tokens. Reduce this to ignore less probable tokens. Default value: `0.9`.
|
||||
|
||||
|
||||
- `top_k` (integer): During text decoding, samples from the top `k` most likely tokens. Reduce this to ignore less probable tokens. Default value: `50`.
|
||||
|
||||
|
||||
- `stop_sequences` (string): A comma-separated list of sequences to stop generation at. For example, inputting '<end>,<stop>' will cease generation at the first occurrence of either 'end' or '<stop>'.
|
||||
|
||||
|
||||
- `seed` (integer): This is the seed for the random generator. Leave it blank to randomize the seed.
|
||||
|
||||
|
||||
- `debug` (boolean): If set to `True`, it provides debugging output in logs.
|
||||
|
||||
Please note that Replicate's mapping of these parameters can be inconsistent across different models, indicating that not all of these parameters may be available for use with all models.
|
||||
"""
|
||||
system_prompt: Optional[str]=None
|
||||
max_new_tokens: Optional[int]=None
|
||||
min_new_tokens: Optional[int]=None
|
||||
temperature: Optional[int]=None
|
||||
top_p: Optional[int]=None
|
||||
top_k: Optional[int]=None
|
||||
stop_sequences: Optional[str]=None
|
||||
seed: Optional[int]=None
|
||||
debug: Optional[bool]=None
|
||||
|
||||
def __init__(self,
|
||||
system_prompt: Optional[str]=None,
|
||||
max_new_tokens: Optional[int]=None,
|
||||
min_new_tokens: Optional[int]=None,
|
||||
temperature: Optional[int]=None,
|
||||
top_p: Optional[int]=None,
|
||||
top_k: Optional[int]=None,
|
||||
stop_sequences: Optional[str]=None,
|
||||
seed: Optional[int]=None,
|
||||
debug: Optional[bool]=None) -> None:
|
||||
system_prompt: Optional[str] = None
|
||||
max_new_tokens: Optional[int] = None
|
||||
min_new_tokens: Optional[int] = None
|
||||
temperature: Optional[int] = None
|
||||
top_p: Optional[int] = None
|
||||
top_k: Optional[int] = None
|
||||
stop_sequences: Optional[str] = None
|
||||
seed: Optional[int] = None
|
||||
debug: Optional[bool] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
system_prompt: Optional[str] = None,
|
||||
max_new_tokens: Optional[int] = None,
|
||||
min_new_tokens: Optional[int] = None,
|
||||
temperature: Optional[int] = None,
|
||||
top_p: Optional[int] = None,
|
||||
top_k: Optional[int] = None,
|
||||
stop_sequences: Optional[str] = None,
|
||||
seed: Optional[int] = None,
|
||||
debug: Optional[bool] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != 'self' and value is not None:
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {k: v for k, v in cls.__dict__.items()
|
||||
if not k.startswith('__')
|
||||
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
|
||||
and v is not None}
|
||||
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
|
||||
# Function to start a prediction and get the prediction URL
|
||||
def start_prediction(version_id, input_data, api_token, api_base, logging_obj, print_verbose):
|
||||
def start_prediction(
|
||||
version_id, input_data, api_token, api_base, logging_obj, print_verbose
|
||||
):
|
||||
base_url = api_base
|
||||
if "deployments" in version_id:
|
||||
print_verbose("\nLiteLLM: Request to custom replicate deployment")
|
||||
|
@ -88,7 +107,7 @@ def start_prediction(version_id, input_data, api_token, api_base, logging_obj, p
|
|||
|
||||
headers = {
|
||||
"Authorization": f"Token {api_token}",
|
||||
"Content-Type": "application/json"
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
initial_prediction_data = {
|
||||
|
@ -98,24 +117,33 @@ def start_prediction(version_id, input_data, api_token, api_base, logging_obj, p
|
|||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=input_data["prompt"],
|
||||
api_key="",
|
||||
additional_args={"complete_input_dict": initial_prediction_data, "headers": headers, "api_base": base_url},
|
||||
input=input_data["prompt"],
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": initial_prediction_data,
|
||||
"headers": headers,
|
||||
"api_base": base_url,
|
||||
},
|
||||
)
|
||||
|
||||
response = requests.post(f"{base_url}/predictions", json=initial_prediction_data, headers=headers)
|
||||
response = requests.post(
|
||||
f"{base_url}/predictions", json=initial_prediction_data, headers=headers
|
||||
)
|
||||
if response.status_code == 201:
|
||||
response_data = response.json()
|
||||
return response_data.get("urls", {}).get("get")
|
||||
else:
|
||||
raise ReplicateError(response.status_code, f"Failed to start prediction {response.text}")
|
||||
raise ReplicateError(
|
||||
response.status_code, f"Failed to start prediction {response.text}"
|
||||
)
|
||||
|
||||
|
||||
# Function to handle prediction response (non-streaming)
|
||||
def handle_prediction_response(prediction_url, api_token, print_verbose):
|
||||
output_string = ""
|
||||
headers = {
|
||||
"Authorization": f"Token {api_token}",
|
||||
"Content-Type": "application/json"
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
status = ""
|
||||
|
@ -127,18 +155,22 @@ def handle_prediction_response(prediction_url, api_token, print_verbose):
|
|||
if response.status_code == 200:
|
||||
response_data = response.json()
|
||||
if "output" in response_data:
|
||||
output_string = "".join(response_data['output'])
|
||||
output_string = "".join(response_data["output"])
|
||||
print_verbose(f"Non-streamed output:{output_string}")
|
||||
status = response_data.get('status', None)
|
||||
status = response_data.get("status", None)
|
||||
logs = response_data.get("logs", "")
|
||||
if status == "failed":
|
||||
replicate_error = response_data.get("error", "")
|
||||
raise ReplicateError(status_code=400, message=f"Error: {replicate_error}, \nReplicate logs:{logs}")
|
||||
raise ReplicateError(
|
||||
status_code=400,
|
||||
message=f"Error: {replicate_error}, \nReplicate logs:{logs}",
|
||||
)
|
||||
else:
|
||||
# this can fail temporarily but it does not mean the replicate request failed, replicate request fails when status=="failed"
|
||||
print_verbose("Replicate: Failed to fetch prediction status and output.")
|
||||
return output_string, logs
|
||||
|
||||
|
||||
# Function to handle prediction response (streaming)
|
||||
def handle_prediction_response_streaming(prediction_url, api_token, print_verbose):
|
||||
previous_output = ""
|
||||
|
@ -146,30 +178,34 @@ def handle_prediction_response_streaming(prediction_url, api_token, print_verbos
|
|||
|
||||
headers = {
|
||||
"Authorization": f"Token {api_token}",
|
||||
"Content-Type": "application/json"
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
status = ""
|
||||
while True and (status not in ["succeeded", "failed", "canceled"]):
|
||||
time.sleep(0.5) # prevent being rate limited by replicate
|
||||
time.sleep(0.5) # prevent being rate limited by replicate
|
||||
print_verbose(f"replicate: polling endpoint: {prediction_url}")
|
||||
response = requests.get(prediction_url, headers=headers)
|
||||
if response.status_code == 200:
|
||||
response_data = response.json()
|
||||
status = response_data['status']
|
||||
status = response_data["status"]
|
||||
if "output" in response_data:
|
||||
output_string = "".join(response_data['output'])
|
||||
new_output = output_string[len(previous_output):]
|
||||
output_string = "".join(response_data["output"])
|
||||
new_output = output_string[len(previous_output) :]
|
||||
print_verbose(f"New chunk: {new_output}")
|
||||
yield {"output": new_output, "status": status}
|
||||
previous_output = output_string
|
||||
status = response_data['status']
|
||||
status = response_data["status"]
|
||||
if status == "failed":
|
||||
replicate_error = response_data.get("error", "")
|
||||
raise ReplicateError(status_code=400, message=f"Error: {replicate_error}")
|
||||
raise ReplicateError(
|
||||
status_code=400, message=f"Error: {replicate_error}"
|
||||
)
|
||||
else:
|
||||
# this can fail temporarily but it does not mean the replicate request failed, replicate request fails when status=="failed"
|
||||
print_verbose(f"Replicate: Failed to fetch prediction status and output.{response.status_code}{response.text}")
|
||||
|
||||
print_verbose(
|
||||
f"Replicate: Failed to fetch prediction status and output.{response.status_code}{response.text}"
|
||||
)
|
||||
|
||||
|
||||
# Function to extract version ID from model string
|
||||
def model_to_version_id(model):
|
||||
|
@ -178,11 +214,12 @@ def model_to_version_id(model):
|
|||
return split_model[1]
|
||||
return model
|
||||
|
||||
|
||||
# Main function for prediction completion
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
api_base: str,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
logging_obj,
|
||||
|
@ -196,35 +233,37 @@ def completion(
|
|||
# Start a prediction and get the prediction URL
|
||||
version_id = model_to_version_id(model)
|
||||
## Load Config
|
||||
config = litellm.ReplicateConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if k not in optional_params: # completion(top_k=3) > replicate_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
config = litellm.ReplicateConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > replicate_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
|
||||
system_prompt = None
|
||||
if optional_params is not None and "supports_system_prompt" in optional_params:
|
||||
supports_sys_prompt = optional_params.pop("supports_system_prompt")
|
||||
else:
|
||||
supports_sys_prompt = False
|
||||
|
||||
|
||||
if supports_sys_prompt:
|
||||
for i in range(len(messages)):
|
||||
if messages[i]["role"] == "system":
|
||||
first_sys_message = messages.pop(i)
|
||||
system_prompt = first_sys_message["content"]
|
||||
break
|
||||
|
||||
|
||||
if model in custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[model]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details.get("roles", {}),
|
||||
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""),
|
||||
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
||||
bos_token=model_prompt_details.get("bos_token", ""),
|
||||
eos_token=model_prompt_details.get("eos_token", ""),
|
||||
messages=messages,
|
||||
)
|
||||
role_dict=model_prompt_details.get("roles", {}),
|
||||
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""),
|
||||
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
||||
bos_token=model_prompt_details.get("bos_token", ""),
|
||||
eos_token=model_prompt_details.get("eos_token", ""),
|
||||
messages=messages,
|
||||
)
|
||||
else:
|
||||
prompt = prompt_factory(model=model, messages=messages)
|
||||
|
||||
|
@ -233,43 +272,58 @@ def completion(
|
|||
input_data = {
|
||||
"prompt": prompt,
|
||||
"system_prompt": system_prompt,
|
||||
**optional_params
|
||||
**optional_params,
|
||||
}
|
||||
# Otherwise, use the prompt as is
|
||||
else:
|
||||
input_data = {
|
||||
"prompt": prompt,
|
||||
**optional_params
|
||||
}
|
||||
|
||||
input_data = {"prompt": prompt, **optional_params}
|
||||
|
||||
## COMPLETION CALL
|
||||
## Replicate Compeltion calls have 2 steps
|
||||
## Step1: Start Prediction: gets a prediction url
|
||||
## Step2: Poll prediction url for response
|
||||
## Step2: is handled with and without streaming
|
||||
model_response["created"] = int(time.time()) # for pricing this must remain right before calling api
|
||||
prediction_url = start_prediction(version_id, input_data, api_key, api_base, logging_obj=logging_obj, print_verbose=print_verbose)
|
||||
model_response["created"] = int(
|
||||
time.time()
|
||||
) # for pricing this must remain right before calling api
|
||||
prediction_url = start_prediction(
|
||||
version_id,
|
||||
input_data,
|
||||
api_key,
|
||||
api_base,
|
||||
logging_obj=logging_obj,
|
||||
print_verbose=print_verbose,
|
||||
)
|
||||
print_verbose(prediction_url)
|
||||
|
||||
# Handle the prediction response (streaming or non-streaming)
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
print_verbose("streaming request")
|
||||
return handle_prediction_response_streaming(prediction_url, api_key, print_verbose)
|
||||
return handle_prediction_response_streaming(
|
||||
prediction_url, api_key, print_verbose
|
||||
)
|
||||
else:
|
||||
result, logs = handle_prediction_response(prediction_url, api_key, print_verbose)
|
||||
model_response["ended"] = time.time() # for pricing this must remain right after calling api
|
||||
result, logs = handle_prediction_response(
|
||||
prediction_url, api_key, print_verbose
|
||||
)
|
||||
model_response[
|
||||
"ended"
|
||||
] = time.time() # for pricing this must remain right after calling api
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
original_response=result,
|
||||
additional_args={"complete_input_dict": input_data,"logs": logs, "api_base": prediction_url, },
|
||||
input=prompt,
|
||||
api_key="",
|
||||
original_response=result,
|
||||
additional_args={
|
||||
"complete_input_dict": input_data,
|
||||
"logs": logs,
|
||||
"api_base": prediction_url,
|
||||
},
|
||||
)
|
||||
|
||||
print_verbose(f"raw model_response: {result}")
|
||||
|
||||
if len(result) == 0: # edge case, where result from replicate is empty
|
||||
if len(result) == 0: # edge case, where result from replicate is empty
|
||||
result = " "
|
||||
|
||||
## Building RESPONSE OBJECT
|
||||
|
@ -278,12 +332,14 @@ def completion(
|
|||
|
||||
# Calculate usage
|
||||
prompt_tokens = len(encoding.encode(prompt))
|
||||
completion_tokens = len(encoding.encode(model_response["choices"][0]["message"].get("content", "")))
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
||||
)
|
||||
model_response["model"] = "replicate/" + model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue