mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
refactor: add black formatting
This commit is contained in:
parent
b87d630b0a
commit
4905929de3
156 changed files with 19723 additions and 10869 deletions
|
@ -13,6 +13,7 @@ import litellm
|
|||
from litellm import embedding, completion, completion_cost, Timeout
|
||||
from litellm import RateLimitError
|
||||
import pytest
|
||||
|
||||
litellm.num_retries = 0
|
||||
litellm.cache = None
|
||||
# litellm.set_verbose=True
|
||||
|
@ -20,23 +21,32 @@ import json
|
|||
|
||||
# litellm.success_callback = ["langfuse"]
|
||||
|
||||
|
||||
def get_current_weather(location, unit="fahrenheit"):
|
||||
"""Get the current weather in a given location"""
|
||||
if "tokyo" in location.lower():
|
||||
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
|
||||
elif "san francisco" in location.lower():
|
||||
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
|
||||
return json.dumps(
|
||||
{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}
|
||||
)
|
||||
elif "paris" in location.lower():
|
||||
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
|
||||
else:
|
||||
return json.dumps({"location": location, "temperature": "unknown"})
|
||||
|
||||
|
||||
# Example dummy function hard coded to return the same weather
|
||||
# In production, this could be your backend API or an external API
|
||||
def test_parallel_function_call():
|
||||
try:
|
||||
# Step 1: send the conversation and available functions to the model
|
||||
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What's the weather like in San Francisco, Tokyo, and Paris?",
|
||||
}
|
||||
]
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
|
@ -50,7 +60,10 @@ def test_parallel_function_call():
|
|||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA",
|
||||
},
|
||||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"enum": ["celsius", "fahrenheit"],
|
||||
},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
|
@ -69,7 +82,9 @@ def test_parallel_function_call():
|
|||
|
||||
print("length of tool calls", len(tool_calls))
|
||||
print("Expecting there to be 3 tool calls")
|
||||
assert len(tool_calls) > 1 # this has to call the function for SF, Tokyo and parise
|
||||
assert (
|
||||
len(tool_calls) > 1
|
||||
) # this has to call the function for SF, Tokyo and parise
|
||||
|
||||
# Step 2: check if the model wanted to call a function
|
||||
if tool_calls:
|
||||
|
@ -78,7 +93,9 @@ def test_parallel_function_call():
|
|||
available_functions = {
|
||||
"get_current_weather": get_current_weather,
|
||||
} # only one function in this example, but you can have multiple
|
||||
messages.append(response_message) # extend conversation with assistant's reply
|
||||
messages.append(
|
||||
response_message
|
||||
) # extend conversation with assistant's reply
|
||||
print("Response message\n", response_message)
|
||||
# Step 4: send the info for each function call and function response to the model
|
||||
for tool_call in tool_calls:
|
||||
|
@ -99,25 +116,26 @@ def test_parallel_function_call():
|
|||
) # extend conversation with function response
|
||||
print(f"messages: {messages}")
|
||||
second_response = litellm.completion(
|
||||
model="gpt-3.5-turbo-1106",
|
||||
messages=messages,
|
||||
temperature=0.2,
|
||||
seed=22
|
||||
model="gpt-3.5-turbo-1106", messages=messages, temperature=0.2, seed=22
|
||||
) # get a new response from the model where it can see the function response
|
||||
print("second response\n", second_response)
|
||||
return second_response
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
test_parallel_function_call()
|
||||
|
||||
|
||||
|
||||
|
||||
def test_parallel_function_call_stream():
|
||||
try:
|
||||
# Step 1: send the conversation and available functions to the model
|
||||
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What's the weather like in San Francisco, Tokyo, and Paris?",
|
||||
}
|
||||
]
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
|
@ -131,7 +149,10 @@ def test_parallel_function_call_stream():
|
|||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA",
|
||||
},
|
||||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"enum": ["celsius", "fahrenheit"],
|
||||
},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
|
@ -144,7 +165,7 @@ def test_parallel_function_call_stream():
|
|||
tools=tools,
|
||||
stream=True,
|
||||
tool_choice="auto", # auto is default, but we'll be explicit
|
||||
complete_response = True
|
||||
complete_response=True,
|
||||
)
|
||||
print("Response\n", response)
|
||||
# for chunk in response:
|
||||
|
@ -154,7 +175,9 @@ def test_parallel_function_call_stream():
|
|||
|
||||
print("length of tool calls", len(tool_calls))
|
||||
print("Expecting there to be 3 tool calls")
|
||||
assert len(tool_calls) > 1 # this has to call the function for SF, Tokyo and parise
|
||||
assert (
|
||||
len(tool_calls) > 1
|
||||
) # this has to call the function for SF, Tokyo and parise
|
||||
|
||||
# Step 2: check if the model wanted to call a function
|
||||
if tool_calls:
|
||||
|
@ -163,7 +186,9 @@ def test_parallel_function_call_stream():
|
|||
available_functions = {
|
||||
"get_current_weather": get_current_weather,
|
||||
} # only one function in this example, but you can have multiple
|
||||
messages.append(response_message) # extend conversation with assistant's reply
|
||||
messages.append(
|
||||
response_message
|
||||
) # extend conversation with assistant's reply
|
||||
print("Response message\n", response_message)
|
||||
# Step 4: send the info for each function call and function response to the model
|
||||
for tool_call in tool_calls:
|
||||
|
@ -184,14 +209,12 @@ def test_parallel_function_call_stream():
|
|||
) # extend conversation with function response
|
||||
print(f"messages: {messages}")
|
||||
second_response = litellm.completion(
|
||||
model="gpt-3.5-turbo-1106",
|
||||
messages=messages,
|
||||
temperature=0.2,
|
||||
seed=22
|
||||
model="gpt-3.5-turbo-1106", messages=messages, temperature=0.2, seed=22
|
||||
) # get a new response from the model where it can see the function response
|
||||
print("second response\n", second_response)
|
||||
return second_response
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
test_parallel_function_call_stream()
|
||||
|
||||
test_parallel_function_call_stream()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue