mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 10:14:26 +00:00
(test) add load test queuing
This commit is contained in:
parent
78f90cd0d0
commit
4e06b4a26f
1 changed files with 139 additions and 0 deletions
139
cookbook/litellm_router/load_test_queuing.py
Normal file
139
cookbook/litellm_router/load_test_queuing.py
Normal file
|
@ -0,0 +1,139 @@
|
|||
import sys, os
|
||||
import traceback
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
import os, io
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import pytest
|
||||
|
||||
from litellm import Router
|
||||
import litellm
|
||||
litellm.set_verbose=False
|
||||
os.environ.pop("AZURE_AD_TOKEN")
|
||||
|
||||
model_list = [{ # list of model deployments
|
||||
"model_name": "gpt-3.5-turbo", # model alias
|
||||
"litellm_params": { # params for litellm completion/embedding call
|
||||
"model": "azure/chatgpt-v-2", # actual model name
|
||||
"api_key": os.getenv("AZURE_API_KEY"),
|
||||
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||
"api_base": os.getenv("AZURE_API_BASE")
|
||||
}
|
||||
}, {
|
||||
"model_name": "gpt-3.5-turbo",
|
||||
"litellm_params": { # params for litellm completion/embedding call
|
||||
"model": "azure/chatgpt-functioncalling",
|
||||
"api_key": os.getenv("AZURE_API_KEY"),
|
||||
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||
"api_base": os.getenv("AZURE_API_BASE")
|
||||
}
|
||||
}, {
|
||||
"model_name": "gpt-3.5-turbo",
|
||||
"litellm_params": { # params for litellm completion/embedding call
|
||||
"model": "gpt-3.5-turbo",
|
||||
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||
}
|
||||
}]
|
||||
router = Router(model_list=model_list)
|
||||
|
||||
|
||||
file_paths = ["test_questions/question1.txt", "test_questions/question2.txt", "test_questions/question3.txt"]
|
||||
questions = []
|
||||
|
||||
for file_path in file_paths:
|
||||
try:
|
||||
print(file_path)
|
||||
with open(file_path, 'r') as file:
|
||||
content = file.read()
|
||||
questions.append(content)
|
||||
except FileNotFoundError as e:
|
||||
print(f"File not found: {e}")
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {e}")
|
||||
|
||||
# for q in questions:
|
||||
# print(q)
|
||||
|
||||
|
||||
|
||||
# make X concurrent calls to litellm.completion(model=gpt-35-turbo, messages=[]), pick a random question in questions array.
|
||||
# Allow me to tune X concurrent calls.. Log question, output/exception, response time somewhere
|
||||
# show me a summary of requests made, success full calls, failed calls. For failed calls show me the exceptions
|
||||
|
||||
import concurrent.futures
|
||||
import random
|
||||
import time
|
||||
|
||||
|
||||
# Function to make concurrent calls to OpenAI API
|
||||
def make_openai_completion(question):
|
||||
try:
|
||||
start_time = time.time()
|
||||
import requests
|
||||
|
||||
data = {
|
||||
'model': 'gpt-3.5-turbo',
|
||||
'messages': [
|
||||
{'role': 'system', 'content': f'You are a helpful assistant. Answer this question{question}'},
|
||||
],
|
||||
}
|
||||
response = requests.post("http://0.0.0.0:8000/queue/request", json=data)
|
||||
print(response)
|
||||
end_time = time.time()
|
||||
|
||||
# Log the request details
|
||||
with open("request_log.txt", "a") as log_file:
|
||||
log_file.write(
|
||||
f"Question: {question[:100]}\nResponse ID:{response.id} Content:{response.choices[0].message.content[:10]}\nTime: {end_time - start_time:.2f} seconds\n\n"
|
||||
)
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
# Log exceptions for failed calls
|
||||
with open("error_log.txt", "a") as error_log_file:
|
||||
error_log_file.write(
|
||||
f"Question: {question[:100]}\nException: {str(e)}\n\n"
|
||||
)
|
||||
return None
|
||||
|
||||
# Number of concurrent calls (you can adjust this)
|
||||
concurrent_calls = 100
|
||||
|
||||
# List to store the futures of concurrent calls
|
||||
futures = []
|
||||
|
||||
# Make concurrent calls
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_calls) as executor:
|
||||
for _ in range(concurrent_calls):
|
||||
random_question = random.choice(questions)
|
||||
futures.append(executor.submit(make_openai_completion, random_question))
|
||||
|
||||
# Wait for all futures to complete
|
||||
concurrent.futures.wait(futures)
|
||||
|
||||
# Summarize the results
|
||||
successful_calls = 0
|
||||
failed_calls = 0
|
||||
|
||||
for future in futures:
|
||||
if future.result() is not None:
|
||||
successful_calls += 1
|
||||
else:
|
||||
failed_calls += 1
|
||||
|
||||
print(f"Load test Summary:")
|
||||
print(f"Total Requests: {concurrent_calls}")
|
||||
print(f"Successful Calls: {successful_calls}")
|
||||
print(f"Failed Calls: {failed_calls}")
|
||||
|
||||
# Display content of the logs
|
||||
with open("request_log.txt", "r") as log_file:
|
||||
print("\nRequest Log:\n", log_file.read())
|
||||
|
||||
with open("error_log.txt", "r") as error_log_file:
|
||||
print("\nError Log:\n", error_log_file.read())
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue