mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
Merge pull request #1315 from spdustin/feature_allow_claude_prefill
Adds "pre-fill" support for Claude
This commit is contained in:
commit
4ea3e778f7
5 changed files with 270 additions and 31 deletions
|
@ -1,42 +1,102 @@
|
|||
# Anthropic
|
||||
LiteLLM supports
|
||||
LiteLLM supports
|
||||
|
||||
- `claude-2.1`
|
||||
- `claude-2`
|
||||
- `claude-2.1`
|
||||
- `claude-instant-1`
|
||||
- `claude-instant-1.2`
|
||||
|
||||
## API Keys
|
||||
|
||||
```python
|
||||
import os
|
||||
```python
|
||||
import os
|
||||
|
||||
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
|
||||
```
|
||||
|
||||
## Sample Usage
|
||||
## Usage
|
||||
|
||||
```python
|
||||
import os
|
||||
from litellm import completion
|
||||
from litellm import completion
|
||||
|
||||
# set env - [OPTIONAL] replace with your anthropic key
|
||||
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
|
||||
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
|
||||
|
||||
messages = [{"role": "user", "content": "Hey! how's it going?"}]
|
||||
response = completion(model="claude-instant-1", messages=messages)
|
||||
print(response)
|
||||
```
|
||||
|
||||
## streaming
|
||||
## Usage - "Assistant Pre-fill"
|
||||
|
||||
You can "put words in Claude's mouth" by including an `assistant` role message as the last item in the `messages` array.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> The returned completion will _not_ include your "pre-fill" text, since it is part of the prompt itself. Make sure to prefix Claude's completion with your pre-fill.
|
||||
|
||||
```python
|
||||
import os
|
||||
from litellm import completion
|
||||
|
||||
# set env - [OPTIONAL] replace with your anthropic key
|
||||
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
|
||||
|
||||
messages = [
|
||||
{"role": "user", "content": "How do you say 'Hello' in German? Return your answer as a JSON object, like this:\n\n{ \"Hello\": \"Hallo\" }"},
|
||||
{"role": "assistant", "content": "{"},
|
||||
]
|
||||
response = completion(model="claude-2.1", messages=messages)
|
||||
print(response)
|
||||
```
|
||||
|
||||
### Example prompt sent to Claude
|
||||
|
||||
```
|
||||
|
||||
Human: How do you say 'Hello' in German? Return your answer as a JSON object, like this:
|
||||
|
||||
{ "Hello": "Hallo" }
|
||||
|
||||
Assistant: {
|
||||
```
|
||||
|
||||
## Usage - "System" messages
|
||||
If you're using Anthropic's Claude 2.1 with Bedrock, `system` role messages are properly formatted for you.
|
||||
|
||||
```python
|
||||
import os
|
||||
from litellm import completion
|
||||
|
||||
# set env - [OPTIONAL] replace with your anthropic key
|
||||
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
|
||||
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a snarky assistant."},
|
||||
{"role": "user", "content": "How do I boil water?"},
|
||||
]
|
||||
response = completion(model="claude-2.1", messages=messages)
|
||||
```
|
||||
|
||||
### Example prompt sent to Claude
|
||||
|
||||
```
|
||||
You are a snarky assistant.
|
||||
|
||||
Human: How do I boil water?
|
||||
|
||||
Assistant:
|
||||
```
|
||||
|
||||
## Streaming
|
||||
Just set `stream=True` when calling completion.
|
||||
|
||||
```python
|
||||
import os
|
||||
from litellm import completion
|
||||
from litellm import completion
|
||||
|
||||
# set env
|
||||
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
|
||||
# set env
|
||||
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
|
||||
|
||||
messages = [{"role": "user", "content": "Hey! how's it going?"}]
|
||||
response = completion(model="claude-instant-1", messages=messages, stream=True)
|
||||
|
|
|
@ -21,7 +21,7 @@ os.environ["AWS_REGION_NAME"] = "" # us-east-1, us-east-2, us-west-1, us-west-2
|
|||
</a>
|
||||
|
||||
```python
|
||||
import os
|
||||
import os
|
||||
from litellm import completion
|
||||
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = ""
|
||||
|
@ -29,14 +29,77 @@ os.environ["AWS_SECRET_ACCESS_KEY"] = ""
|
|||
os.environ["AWS_REGION_NAME"] = ""
|
||||
|
||||
response = completion(
|
||||
model="anthropic.claude-instant-v1",
|
||||
model="anthropic.claude-instant-v1",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}]
|
||||
)
|
||||
```
|
||||
|
||||
## Usage - "Assistant Pre-fill"
|
||||
|
||||
If you're using Anthropic's Claude with Bedrock, you can "put words in Claude's mouth" by including an `assistant` role message as the last item in the `messages` array.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> The returned completion will _**not**_ include your "pre-fill" text, since it is part of the prompt itself. Make sure to prefix Claude's completion with your pre-fill.
|
||||
|
||||
```python
|
||||
import os
|
||||
from litellm import completion
|
||||
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = ""
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
|
||||
os.environ["AWS_REGION_NAME"] = ""
|
||||
|
||||
messages = [
|
||||
{"role": "user", "content": "How do you say 'Hello' in German? Return your answer as a JSON object, like this:\n\n{ \"Hello\": \"Hallo\" }"},
|
||||
{"role": "assistant", "content": "{"},
|
||||
]
|
||||
response = completion(model="anthropic.claude-v2", messages=messages)
|
||||
```
|
||||
|
||||
### Example prompt sent to Claude
|
||||
|
||||
```
|
||||
|
||||
Human: How do you say 'Hello' in German? Return your answer as a JSON object, like this:
|
||||
|
||||
{ "Hello": "Hallo" }
|
||||
|
||||
Assistant: {
|
||||
```
|
||||
|
||||
## Usage - "System" messages
|
||||
If you're using Anthropic's Claude 2.1 with Bedrock, `system` role messages are properly formatted for you.
|
||||
|
||||
```python
|
||||
import os
|
||||
from litellm import completion
|
||||
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = ""
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
|
||||
os.environ["AWS_REGION_NAME"] = ""
|
||||
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a snarky assistant."},
|
||||
{"role": "user", "content": "How do I boil water?"},
|
||||
]
|
||||
response = completion(model="anthropic.claude-v2:1", messages=messages)
|
||||
```
|
||||
|
||||
### Example prompt sent to Claude
|
||||
|
||||
```
|
||||
You are a snarky assistant.
|
||||
|
||||
Human: How do I boil water?
|
||||
|
||||
Assistant:
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Usage - Streaming
|
||||
```python
|
||||
import os
|
||||
import os
|
||||
from litellm import completion
|
||||
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = ""
|
||||
|
@ -44,7 +107,7 @@ os.environ["AWS_SECRET_ACCESS_KEY"] = ""
|
|||
os.environ["AWS_REGION_NAME"] = ""
|
||||
|
||||
response = completion(
|
||||
model="anthropic.claude-instant-v1",
|
||||
model="anthropic.claude-instant-v1",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
stream=True
|
||||
)
|
||||
|
@ -79,11 +142,11 @@ for chunk in response:
|
|||
### Passing credentials as parameters - Completion()
|
||||
Pass AWS credentials as parameters to litellm.completion
|
||||
```python
|
||||
import os
|
||||
import os
|
||||
from litellm import completion
|
||||
|
||||
response = completion(
|
||||
model="anthropic.claude-instant-v1",
|
||||
model="anthropic.claude-instant-v1",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
aws_access_key_id="",
|
||||
aws_secret_access_key="",
|
||||
|
@ -133,10 +196,11 @@ response = completion(
|
|||
```
|
||||
|
||||
## Supported AWS Bedrock Models
|
||||
Here's an example of using a bedrock model with LiteLLM
|
||||
Here's an example of using a bedrock model with LiteLLM
|
||||
|
||||
| Model Name | Command |
|
||||
|--------------------------|------------------------------------------------------------------|
|
||||
| Anthropic Claude-V2.1 | `completion(model='anthropic.claude-v2:1', messages=messages)` | `os.environ['ANTHROPIC_ACCESS_KEY_ID']`, `os.environ['ANTHROPIC_SECRET_ACCESS_KEY']` |
|
||||
| Anthropic Claude-V2 | `completion(model='anthropic.claude-v2', messages=messages)` | `os.environ['ANTHROPIC_ACCESS_KEY_ID']`, `os.environ['ANTHROPIC_SECRET_ACCESS_KEY']` |
|
||||
| Anthropic Claude-Instant V1 | `completion(model='anthropic.claude-instant-v1', messages=messages)` | `os.environ['ANTHROPIC_ACCESS_KEY_ID']`, `os.environ['ANTHROPIC_SECRET_ACCESS_KEY']` |
|
||||
| Anthropic Claude-V1 | `completion(model='anthropic.claude-v1', messages=messages)` | `os.environ['ANTHROPIC_ACCESS_KEY_ID']`, `os.environ['ANTHROPIC_SECRET_ACCESS_KEY']` |
|
||||
|
|
|
@ -295,6 +295,9 @@ def claude_2_1_pt(
|
|||
if system message is passed in, you can only do system, human, assistant or system, human
|
||||
|
||||
if a system message is passed in and followed by an assistant message, insert a blank human message between them.
|
||||
|
||||
Additionally, you can "put words in Claude's mouth" by ending with an assistant message.
|
||||
See: https://docs.anthropic.com/claude/docs/put-words-in-claudes-mouth
|
||||
"""
|
||||
|
||||
class AnthropicConstants(Enum):
|
||||
|
@ -311,7 +314,8 @@ def claude_2_1_pt(
|
|||
if idx > 0 and messages[idx - 1]["role"] == "system":
|
||||
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}" # Insert a blank human message
|
||||
prompt += f"{AnthropicConstants.AI_PROMPT.value}{message['content']}"
|
||||
prompt += f"{AnthropicConstants.AI_PROMPT.value}" # prompt must end with \"\n\nAssistant: " turn
|
||||
if messages[-1]["role"] != "assistant":
|
||||
prompt += f"{AnthropicConstants.AI_PROMPT.value}" # prompt must end with \"\n\nAssistant: " turn
|
||||
return prompt
|
||||
|
||||
|
||||
|
@ -364,6 +368,10 @@ def format_prompt_togetherai(messages, prompt_format, chat_template):
|
|||
def anthropic_pt(
|
||||
messages: list,
|
||||
): # format - https://docs.anthropic.com/claude/reference/complete_post
|
||||
"""
|
||||
You can "put words in Claude's mouth" by ending with an assistant message.
|
||||
See: https://docs.anthropic.com/claude/docs/put-words-in-claudes-mouth
|
||||
"""
|
||||
class AnthropicConstants(Enum):
|
||||
HUMAN_PROMPT = "\n\nHuman: "
|
||||
AI_PROMPT = "\n\nAssistant: "
|
||||
|
@ -382,7 +390,8 @@ def anthropic_pt(
|
|||
idx == 0 and message["role"] == "assistant"
|
||||
): # ensure the prompt always starts with `\n\nHuman: `
|
||||
prompt = f"{AnthropicConstants.HUMAN_PROMPT.value}" + prompt
|
||||
prompt += f"{AnthropicConstants.AI_PROMPT.value}"
|
||||
if messages[-1]["role"] != "assistant":
|
||||
prompt += f"{AnthropicConstants.AI_PROMPT.value}"
|
||||
return prompt
|
||||
|
||||
|
||||
|
@ -580,7 +589,7 @@ def prompt_factory(
|
|||
if custom_llm_provider == "ollama":
|
||||
return ollama_pt(model=model, messages=messages)
|
||||
elif custom_llm_provider == "anthropic":
|
||||
if "claude-2.1" in model:
|
||||
if any(_ in model for _ in ["claude-2.1","claude-v2:1"]):
|
||||
return claude_2_1_pt(messages=messages)
|
||||
else:
|
||||
return anthropic_pt(messages=messages)
|
||||
|
|
|
@ -66,6 +66,43 @@ def test_completion_bedrock_claude_completion_auth():
|
|||
test_completion_bedrock_claude_completion_auth()
|
||||
|
||||
|
||||
def test_completion_bedrock_claude_2_1_completion_auth():
|
||||
print("calling bedrock claude 2.1 completion params auth")
|
||||
import os
|
||||
|
||||
aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
|
||||
aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
|
||||
aws_region_name = os.environ["AWS_REGION_NAME"]
|
||||
|
||||
os.environ.pop("AWS_ACCESS_KEY_ID", None)
|
||||
os.environ.pop("AWS_SECRET_ACCESS_KEY", None)
|
||||
os.environ.pop("AWS_REGION_NAME", None)
|
||||
|
||||
try:
|
||||
response = completion(
|
||||
model="bedrock/anthropic.claude-v2:1",
|
||||
messages=messages,
|
||||
max_tokens=10,
|
||||
temperature=0.1,
|
||||
aws_access_key_id=aws_access_key_id,
|
||||
aws_secret_access_key=aws_secret_access_key,
|
||||
aws_region_name=aws_region_name,
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(response)
|
||||
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
|
||||
os.environ["AWS_REGION_NAME"] = aws_region_name
|
||||
except RateLimitError:
|
||||
pass
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
test_completion_bedrock_claude_2_1_completion_auth()
|
||||
|
||||
|
||||
def test_completion_bedrock_claude_external_client_auth():
|
||||
print("\ncalling bedrock claude external client auth")
|
||||
import os
|
||||
|
|
|
@ -2,27 +2,96 @@
|
|||
# This tests if prompts are being correctly formatted
|
||||
import sys
|
||||
import os
|
||||
import io
|
||||
|
||||
sys.path.insert(0, os.path.abspath("../.."))
|
||||
|
||||
# from litellm.llms.prompt_templates.factory import prompt_factory
|
||||
from litellm import completion
|
||||
from litellm.llms.prompt_templates.factory import (
|
||||
anthropic_pt,
|
||||
claude_2_1_pt,
|
||||
llama_2_chat_pt,
|
||||
)
|
||||
|
||||
|
||||
def codellama_prompt_format():
|
||||
model = "huggingface/codellama/CodeLlama-7b-Instruct-hf"
|
||||
def test_codellama_prompt_format():
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a good bot"},
|
||||
{"role": "user", "content": "Hey, how's it going?"},
|
||||
]
|
||||
expected_response = """[INST] <<SYS>>
|
||||
You are a good bot
|
||||
<</SYS>>
|
||||
[/INST]
|
||||
[INST] Hey, how's it going? [/INST]"""
|
||||
response = completion(model=model, messages=messages)
|
||||
print(response)
|
||||
expected_prompt = "<s>[INST] <<SYS>>\nYou are a good bot\n<</SYS>>\n [/INST]\n[INST] Hey, how's it going? [/INST]\n"
|
||||
assert llama_2_chat_pt(messages) == expected_prompt
|
||||
|
||||
|
||||
def test_claude_2_1_pt_formatting():
|
||||
# Test case: User only, should add Assistant
|
||||
messages = [{"role": "user", "content": "Hello"}]
|
||||
expected_prompt = "\n\nHuman: Hello\n\nAssistant: "
|
||||
assert claude_2_1_pt(messages) == expected_prompt
|
||||
|
||||
# Test case: System, User, and Assistant "pre-fill" sequence,
|
||||
# Should return pre-fill
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": 'Please return "Hello World" as a JSON object.'},
|
||||
{"role": "assistant", "content": "{"},
|
||||
]
|
||||
expected_prompt = 'You are a helpful assistant.\n\nHuman: Please return "Hello World" as a JSON object.\n\nAssistant: {'
|
||||
assert claude_2_1_pt(messages) == expected_prompt
|
||||
|
||||
# Test case: System, Assistant sequence, should insert blank Human message
|
||||
# before Assistant pre-fill
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a storyteller."},
|
||||
{"role": "assistant", "content": "Once upon a time, there "},
|
||||
]
|
||||
expected_prompt = (
|
||||
"You are a storyteller.\n\nHuman: \n\nAssistant: Once upon a time, there "
|
||||
)
|
||||
assert claude_2_1_pt(messages) == expected_prompt
|
||||
|
||||
# Test case: System, User sequence
|
||||
messages = [
|
||||
{"role": "system", "content": "System reboot"},
|
||||
{"role": "user", "content": "Is everything okay?"},
|
||||
]
|
||||
expected_prompt = "System reboot\n\nHuman: Is everything okay?\n\nAssistant: "
|
||||
assert claude_2_1_pt(messages) == expected_prompt
|
||||
|
||||
|
||||
def test_anthropic_pt_formatting():
|
||||
# Test case: User only, should add Assistant
|
||||
messages = [{"role": "user", "content": "Hello"}]
|
||||
expected_prompt = "\n\nHuman: Hello\n\nAssistant: "
|
||||
assert anthropic_pt(messages) == expected_prompt
|
||||
|
||||
# Test case: System, User, and Assistant "pre-fill" sequence,
|
||||
# Should return pre-fill
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": 'Please return "Hello World" as a JSON object.'},
|
||||
{"role": "assistant", "content": "{"},
|
||||
]
|
||||
expected_prompt = '\n\nHuman: <admin>You are a helpful assistant.</admin>\n\nHuman: Please return "Hello World" as a JSON object.\n\nAssistant: {'
|
||||
assert anthropic_pt(messages) == expected_prompt
|
||||
|
||||
# Test case: System, Assistant sequence, should NOT insert blank Human message
|
||||
# before Assistant pre-fill, because "System" messages are Human
|
||||
# messages wrapped with <admin></admin>
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a storyteller."},
|
||||
{"role": "assistant", "content": "Once upon a time, there "},
|
||||
]
|
||||
expected_prompt = "\n\nHuman: <admin>You are a storyteller.</admin>\n\nAssistant: Once upon a time, there "
|
||||
assert anthropic_pt(messages) == expected_prompt
|
||||
|
||||
# Test case: System, User sequence
|
||||
messages = [
|
||||
{"role": "system", "content": "System reboot"},
|
||||
{"role": "user", "content": "Is everything okay?"},
|
||||
]
|
||||
expected_prompt = "\n\nHuman: <admin>System reboot</admin>\n\nHuman: Is everything okay?\n\nAssistant: "
|
||||
assert anthropic_pt(messages) == expected_prompt
|
||||
|
||||
|
||||
# codellama_prompt_format()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue