fix(router.py): simplify scheduler

move the scheduler poll queuing logic into the router class, making it easier to use
This commit is contained in:
Krrish Dholakia 2024-06-01 16:09:41 -07:00
parent d2e6ea4d03
commit 4ffbd80584
5 changed files with 177 additions and 131 deletions

View file

@ -62,6 +62,7 @@ from litellm.types.llms.openai import (
Run,
AssistantToolParam,
)
from litellm.scheduler import Scheduler, FlowItem
from typing import Iterable
@ -87,6 +88,8 @@ class Router:
List[tuple]
] = None, # if you want to cache across model groups
client_ttl: int = 3600, # ttl for cached clients - will re-initialize after this time in seconds
## SCHEDULER ##
polling_interval: Optional[float] = None,
## RELIABILITY ##
num_retries: Optional[int] = None,
timeout: Optional[float] = None,
@ -141,7 +144,8 @@ class Router:
cache_kwargs (dict): Additional kwargs to pass to RedisCache. Defaults to {}.
caching_groups (Optional[List[tuple]]): List of model groups for caching across model groups. Defaults to None.
client_ttl (int): Time-to-live for cached clients in seconds. Defaults to 3600.
num_retries (int): Number of retries for failed requests. Defaults to 0.
polling_interval: (Optional[float]): frequency of polling queue. Only for '.scheduler_acompletion()'. Default is 3ms.
num_retries (Optional[int]): Number of retries for failed requests. Defaults to 2.
timeout (Optional[float]): Timeout for requests. Defaults to None.
default_litellm_params (dict): Default parameters for Router.chat.completion.create. Defaults to {}.
set_verbose (bool): Flag to set verbose mode. Defaults to False.
@ -208,6 +212,8 @@ class Router:
[]
) # names of models under litellm_params. ex. azure/chatgpt-v-2
self.deployment_latency_map = {}
### SCHEDULER ###
self.scheduler = Scheduler(polling_interval=polling_interval)
### CACHING ###
cache_type: Literal["local", "redis"] = "local" # default to an in-memory cache
redis_cache = None
@ -533,11 +539,17 @@ class Router:
) -> ModelResponse:
...
@overload
async def acompletion(
self, model: str, messages: List[Dict[str, str]], stream: Union[Literal[True], Literal[False]] = False, **kwargs
) -> Union[CustomStreamWrapper, ModelResponse]:
...
# fmt: on
# The actual implementation of the function
async def acompletion(
self, model: str, messages: List[Dict[str, str]], stream=False, **kwargs
self, model: str, messages: List[Dict[str, str]], stream: bool = False, **kwargs
):
try:
kwargs["model"] = model
@ -905,6 +917,81 @@ class Router:
# If we exit the loop without returning, all tasks failed
raise Exception("All tasks failed")
### SCHEDULER ###
# fmt: off
@overload
async def schedule_acompletion(
self, model: str, messages: List[Dict[str, str]], priority: int, stream: Literal[False] = False, **kwargs
) -> ModelResponse:
...
@overload
async def schedule_acompletion(
self, model: str, messages: List[Dict[str, str]], priority: int, stream: Literal[True], **kwargs
) -> CustomStreamWrapper:
...
# fmt: on
async def schedule_acompletion(
self,
model: str,
messages: List[Dict[str, str]],
priority: int,
stream=False,
**kwargs,
):
### FLOW ITEM ###
_request_id = str(uuid.uuid4())
item = FlowItem(
priority=priority, # 👈 SET PRIORITY FOR REQUEST
request_id=_request_id, # 👈 SET REQUEST ID
model_name="gpt-3.5-turbo", # 👈 SAME as 'Router'
)
### [fin] ###
## ADDS REQUEST TO QUEUE ##
await self.scheduler.add_request(request=item)
## POLL QUEUE
end_time = time.time() + self.timeout
curr_time = time.time()
poll_interval = self.scheduler.polling_interval # poll every 3ms
make_request = False
while curr_time < end_time:
_healthy_deployments = await self._async_get_healthy_deployments(
model=model
)
make_request = await self.scheduler.poll( ## POLL QUEUE ## - returns 'True' if there's healthy deployments OR if request is at top of queue
id=item.request_id,
model_name=item.model_name,
health_deployments=_healthy_deployments,
)
if make_request: ## IF TRUE -> MAKE REQUEST
break
else: ## ELSE -> loop till default_timeout
await asyncio.sleep(poll_interval)
curr_time = time.time()
if make_request:
try:
_response = await self.acompletion(
model=model, messages=messages, stream=stream, **kwargs
)
return _response
except Exception as e:
setattr(e, "priority", priority)
raise e
else:
raise litellm.Timeout(
message="Request timed out while polling queue",
model=model,
llm_provider="openai",
)
def image_generation(self, prompt: str, model: str, **kwargs):
try:
kwargs["model"] = model