mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 11:43:54 +00:00
feat(bedrock_httpx.py): working cohere command r async calls
This commit is contained in:
parent
926b86af87
commit
5185580e3d
6 changed files with 364 additions and 32 deletions
|
@ -670,6 +670,7 @@ from .llms.sagemaker import SagemakerConfig
|
||||||
from .llms.ollama import OllamaConfig
|
from .llms.ollama import OllamaConfig
|
||||||
from .llms.ollama_chat import OllamaChatConfig
|
from .llms.ollama_chat import OllamaChatConfig
|
||||||
from .llms.maritalk import MaritTalkConfig
|
from .llms.maritalk import MaritTalkConfig
|
||||||
|
from .llms.bedrock_httpx import AmazonCohereChatConfig
|
||||||
from .llms.bedrock import (
|
from .llms.bedrock import (
|
||||||
AmazonTitanConfig,
|
AmazonTitanConfig,
|
||||||
AmazonAI21Config,
|
AmazonAI21Config,
|
||||||
|
|
|
@ -7,7 +7,7 @@ import json
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
import requests, copy # type: ignore
|
import requests, copy # type: ignore
|
||||||
import time
|
import time
|
||||||
from typing import Callable, Optional, List, Literal, Union
|
from typing import Callable, Optional, List, Literal, Union, Any, TypedDict, Tuple
|
||||||
from litellm.utils import (
|
from litellm.utils import (
|
||||||
ModelResponse,
|
ModelResponse,
|
||||||
Usage,
|
Usage,
|
||||||
|
@ -18,11 +18,110 @@ from litellm.utils import (
|
||||||
get_secret,
|
get_secret,
|
||||||
)
|
)
|
||||||
import litellm
|
import litellm
|
||||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
from .prompt_templates.factory import prompt_factory, custom_prompt, cohere_message_pt
|
||||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
||||||
from .base import BaseLLM
|
from .base import BaseLLM
|
||||||
import httpx # type: ignore
|
import httpx # type: ignore
|
||||||
from .bedrock import BedrockError
|
from .bedrock import BedrockError, convert_messages_to_prompt
|
||||||
|
from litellm.types.llms.bedrock import *
|
||||||
|
|
||||||
|
|
||||||
|
class AmazonCohereChatConfig:
|
||||||
|
"""
|
||||||
|
Reference - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-cohere-command-r-plus.html
|
||||||
|
"""
|
||||||
|
|
||||||
|
documents: Optional[List[Document]] = None
|
||||||
|
search_queries_only: Optional[bool] = None
|
||||||
|
preamble: Optional[str] = None
|
||||||
|
max_tokens: Optional[int] = None
|
||||||
|
temperature: Optional[float] = None
|
||||||
|
p: Optional[float] = None
|
||||||
|
k: Optional[float] = None
|
||||||
|
prompt_truncation: Optional[str] = None
|
||||||
|
frequency_penalty: Optional[float] = None
|
||||||
|
presence_penalty: Optional[float] = None
|
||||||
|
seed: Optional[int] = None
|
||||||
|
return_prompt: Optional[bool] = None
|
||||||
|
stop_sequences: Optional[List[str]] = None
|
||||||
|
raw_prompting: Optional[bool] = None
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
documents: Optional[List[Document]] = None,
|
||||||
|
search_queries_only: Optional[bool] = None,
|
||||||
|
preamble: Optional[str] = None,
|
||||||
|
max_tokens: Optional[int] = None,
|
||||||
|
temperature: Optional[float] = None,
|
||||||
|
p: Optional[float] = None,
|
||||||
|
k: Optional[float] = None,
|
||||||
|
prompt_truncation: Optional[str] = None,
|
||||||
|
frequency_penalty: Optional[float] = None,
|
||||||
|
presence_penalty: Optional[float] = None,
|
||||||
|
seed: Optional[int] = None,
|
||||||
|
return_prompt: Optional[bool] = None,
|
||||||
|
stop_sequences: Optional[str] = None,
|
||||||
|
raw_prompting: Optional[bool] = None,
|
||||||
|
) -> None:
|
||||||
|
locals_ = locals()
|
||||||
|
for key, value in locals_.items():
|
||||||
|
if key != "self" and value is not None:
|
||||||
|
setattr(self.__class__, key, value)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def get_config(cls):
|
||||||
|
return {
|
||||||
|
k: v
|
||||||
|
for k, v in cls.__dict__.items()
|
||||||
|
if not k.startswith("__")
|
||||||
|
and not isinstance(
|
||||||
|
v,
|
||||||
|
(
|
||||||
|
types.FunctionType,
|
||||||
|
types.BuiltinFunctionType,
|
||||||
|
classmethod,
|
||||||
|
staticmethod,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
and v is not None
|
||||||
|
}
|
||||||
|
|
||||||
|
def get_supported_openai_params(self) -> List[str]:
|
||||||
|
return [
|
||||||
|
"max_tokens",
|
||||||
|
"stream",
|
||||||
|
"stop",
|
||||||
|
"temperature",
|
||||||
|
"top_p",
|
||||||
|
"frequency_penalty",
|
||||||
|
"presence_penalty",
|
||||||
|
"seed",
|
||||||
|
"stop",
|
||||||
|
]
|
||||||
|
|
||||||
|
def map_openai_params(
|
||||||
|
self, non_default_params: dict, optional_params: dict
|
||||||
|
) -> dict:
|
||||||
|
for param, value in non_default_params.items():
|
||||||
|
if param == "max_tokens":
|
||||||
|
optional_params["max_tokens"] = value
|
||||||
|
if param == "stream":
|
||||||
|
optional_params["stream"] = value
|
||||||
|
if param == "stop":
|
||||||
|
if isinstance(value, str):
|
||||||
|
value = [value]
|
||||||
|
optional_params["stop_sequences"] = value
|
||||||
|
if param == "temperature":
|
||||||
|
optional_params["temperature"] = value
|
||||||
|
if param == "top_p":
|
||||||
|
optional_params["p"] = value
|
||||||
|
if param == "frequency_penalty":
|
||||||
|
optional_params["frequency_penalty"] = value
|
||||||
|
if param == "presence_penalty":
|
||||||
|
optional_params["presence_penalty"] = value
|
||||||
|
if "seed":
|
||||||
|
optional_params["seed"] = value
|
||||||
|
return optional_params
|
||||||
|
|
||||||
|
|
||||||
class BedrockLLM(BaseLLM):
|
class BedrockLLM(BaseLLM):
|
||||||
|
@ -47,6 +146,48 @@ class BedrockLLM(BaseLLM):
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
|
def convert_messages_to_prompt(
|
||||||
|
self, model, messages, provider, custom_prompt_dict
|
||||||
|
) -> Tuple[str, Optional[list]]:
|
||||||
|
# handle anthropic prompts and amazon titan prompts
|
||||||
|
prompt = ""
|
||||||
|
chat_history: Optional[list] = None
|
||||||
|
if provider == "anthropic" or provider == "amazon":
|
||||||
|
if model in custom_prompt_dict:
|
||||||
|
# check if the model has a registered custom prompt
|
||||||
|
model_prompt_details = custom_prompt_dict[model]
|
||||||
|
prompt = custom_prompt(
|
||||||
|
role_dict=model_prompt_details["roles"],
|
||||||
|
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
||||||
|
final_prompt_value=model_prompt_details["final_prompt_value"],
|
||||||
|
messages=messages,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
prompt = prompt_factory(
|
||||||
|
model=model, messages=messages, custom_llm_provider="bedrock"
|
||||||
|
)
|
||||||
|
elif provider == "mistral":
|
||||||
|
prompt = prompt_factory(
|
||||||
|
model=model, messages=messages, custom_llm_provider="bedrock"
|
||||||
|
)
|
||||||
|
elif provider == "meta":
|
||||||
|
prompt = prompt_factory(
|
||||||
|
model=model, messages=messages, custom_llm_provider="bedrock"
|
||||||
|
)
|
||||||
|
elif provider == "cohere":
|
||||||
|
prompt, chat_history = cohere_message_pt(messages=messages)
|
||||||
|
else:
|
||||||
|
prompt = ""
|
||||||
|
for message in messages:
|
||||||
|
if "role" in message:
|
||||||
|
if message["role"] == "user":
|
||||||
|
prompt += f"{message['content']}"
|
||||||
|
else:
|
||||||
|
prompt += f"{message['content']}"
|
||||||
|
else:
|
||||||
|
prompt += f"{message['content']}"
|
||||||
|
return prompt, chat_history # type: ignore
|
||||||
|
|
||||||
def get_credentials(
|
def get_credentials(
|
||||||
self,
|
self,
|
||||||
aws_access_key_id: Optional[str] = None,
|
aws_access_key_id: Optional[str] = None,
|
||||||
|
@ -114,11 +255,168 @@ class BedrockLLM(BaseLLM):
|
||||||
|
|
||||||
return session.get_credentials()
|
return session.get_credentials()
|
||||||
|
|
||||||
def completion(self, *args, **kwargs) -> Union[ModelResponse, CustomStreamWrapper]:
|
def completion(
|
||||||
## get credentials
|
self,
|
||||||
## generate signature
|
model: str,
|
||||||
## make request
|
messages: list,
|
||||||
return super().completion(*args, **kwargs)
|
custom_prompt_dict: dict,
|
||||||
|
model_response: ModelResponse,
|
||||||
|
print_verbose: Callable,
|
||||||
|
encoding,
|
||||||
|
logging_obj,
|
||||||
|
optional_params: dict,
|
||||||
|
timeout: Optional[Union[float, httpx.Timeout]],
|
||||||
|
litellm_params=None,
|
||||||
|
logger_fn=None,
|
||||||
|
extra_headers: Optional[dict] = None,
|
||||||
|
client: Optional[HTTPHandler] = None,
|
||||||
|
) -> Union[ModelResponse, CustomStreamWrapper]:
|
||||||
|
try:
|
||||||
|
import boto3
|
||||||
|
|
||||||
|
from botocore.auth import SigV4Auth
|
||||||
|
from botocore.awsrequest import AWSRequest
|
||||||
|
from botocore.credentials import Credentials
|
||||||
|
except ImportError as e:
|
||||||
|
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
||||||
|
|
||||||
|
## CREDENTIALS ##
|
||||||
|
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
|
||||||
|
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
||||||
|
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
||||||
|
aws_region_name = optional_params.pop("aws_region_name", None)
|
||||||
|
aws_role_name = optional_params.pop("aws_role_name", None)
|
||||||
|
aws_session_name = optional_params.pop("aws_session_name", None)
|
||||||
|
aws_profile_name = optional_params.pop("aws_profile_name", None)
|
||||||
|
aws_bedrock_runtime_endpoint = optional_params.pop(
|
||||||
|
"aws_bedrock_runtime_endpoint", None
|
||||||
|
) # https://bedrock-runtime.{region_name}.amazonaws.com
|
||||||
|
|
||||||
|
### SET REGION NAME ###
|
||||||
|
if aws_region_name is None:
|
||||||
|
# check env #
|
||||||
|
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
|
||||||
|
|
||||||
|
if litellm_aws_region_name is not None and isinstance(
|
||||||
|
litellm_aws_region_name, str
|
||||||
|
):
|
||||||
|
aws_region_name = litellm_aws_region_name
|
||||||
|
|
||||||
|
standard_aws_region_name = get_secret("AWS_REGION", None)
|
||||||
|
if standard_aws_region_name is not None and isinstance(
|
||||||
|
standard_aws_region_name, str
|
||||||
|
):
|
||||||
|
aws_region_name = standard_aws_region_name
|
||||||
|
|
||||||
|
if aws_region_name is None:
|
||||||
|
aws_region_name = "us-west-2"
|
||||||
|
|
||||||
|
credentials: Credentials = self.get_credentials(
|
||||||
|
aws_access_key_id=aws_access_key_id,
|
||||||
|
aws_secret_access_key=aws_secret_access_key,
|
||||||
|
aws_region_name=aws_region_name,
|
||||||
|
aws_session_name=aws_session_name,
|
||||||
|
aws_profile_name=aws_profile_name,
|
||||||
|
aws_role_name=aws_role_name,
|
||||||
|
)
|
||||||
|
|
||||||
|
### SET RUNTIME ENDPOINT ###
|
||||||
|
endpoint_url = ""
|
||||||
|
env_aws_bedrock_runtime_endpoint = get_secret("AWS_BEDROCK_RUNTIME_ENDPOINT")
|
||||||
|
if aws_bedrock_runtime_endpoint is not None and isinstance(
|
||||||
|
aws_bedrock_runtime_endpoint, str
|
||||||
|
):
|
||||||
|
endpoint_url = aws_bedrock_runtime_endpoint
|
||||||
|
elif env_aws_bedrock_runtime_endpoint and isinstance(
|
||||||
|
env_aws_bedrock_runtime_endpoint, str
|
||||||
|
):
|
||||||
|
endpoint_url = env_aws_bedrock_runtime_endpoint
|
||||||
|
else:
|
||||||
|
endpoint_url = f"https://bedrock-runtime.{aws_region_name}.amazonaws.com"
|
||||||
|
|
||||||
|
endpoint_url = f"{endpoint_url}/model/{model}/invoke"
|
||||||
|
|
||||||
|
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)
|
||||||
|
|
||||||
|
provider = model.split(".")[0]
|
||||||
|
prompt, chat_history = self.convert_messages_to_prompt(
|
||||||
|
model, messages, provider, custom_prompt_dict
|
||||||
|
)
|
||||||
|
inference_params = copy.deepcopy(optional_params)
|
||||||
|
stream = inference_params.pop("stream", False)
|
||||||
|
|
||||||
|
if provider == "cohere":
|
||||||
|
if model.startswith("cohere.command-r"):
|
||||||
|
## LOAD CONFIG
|
||||||
|
config = litellm.AmazonCohereChatConfig().get_config()
|
||||||
|
for k, v in config.items():
|
||||||
|
if (
|
||||||
|
k not in inference_params
|
||||||
|
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||||
|
inference_params[k] = v
|
||||||
|
if optional_params.get("stream", False) == True:
|
||||||
|
inference_params["stream"] = (
|
||||||
|
True # cohere requires stream = True in inference params
|
||||||
|
)
|
||||||
|
|
||||||
|
_data = {"message": prompt, **inference_params}
|
||||||
|
if chat_history is not None:
|
||||||
|
_data["chat_history"] = chat_history
|
||||||
|
data = json.dumps(_data)
|
||||||
|
else:
|
||||||
|
## LOAD CONFIG
|
||||||
|
config = litellm.AmazonCohereConfig.get_config()
|
||||||
|
for k, v in config.items():
|
||||||
|
if (
|
||||||
|
k not in inference_params
|
||||||
|
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||||
|
inference_params[k] = v
|
||||||
|
if optional_params.get("stream", False) == True:
|
||||||
|
inference_params["stream"] = (
|
||||||
|
True # cohere requires stream = True in inference params
|
||||||
|
)
|
||||||
|
data = json.dumps({"prompt": prompt, **inference_params})
|
||||||
|
else:
|
||||||
|
raise Exception("UNSUPPORTED PROVIDER")
|
||||||
|
|
||||||
|
## COMPLETION CALL
|
||||||
|
headers = {"Content-Type": "application/json"}
|
||||||
|
request = AWSRequest(
|
||||||
|
method="POST", url=endpoint_url, data=data, headers=headers
|
||||||
|
)
|
||||||
|
sigv4.add_auth(request)
|
||||||
|
prepped = request.prepare()
|
||||||
|
|
||||||
|
if client is None:
|
||||||
|
_params = {}
|
||||||
|
if timeout is not None:
|
||||||
|
if isinstance(timeout, float) or isinstance(timeout, int):
|
||||||
|
timeout = httpx.Timeout(timeout)
|
||||||
|
_params["timeout"] = timeout
|
||||||
|
self.client = HTTPHandler(**_params) # type: ignore
|
||||||
|
else:
|
||||||
|
self.client = client
|
||||||
|
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.pre_call(
|
||||||
|
input=messages,
|
||||||
|
api_key="",
|
||||||
|
additional_args={
|
||||||
|
"complete_input_dict": data,
|
||||||
|
"api_base": prepped.url,
|
||||||
|
"headers": prepped.headers,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
response = self.client.post(url=prepped.url, headers=prepped.headers, data=data) # type: ignore
|
||||||
|
|
||||||
|
try:
|
||||||
|
response.raise_for_status()
|
||||||
|
except httpx.HTTPStatusError as err:
|
||||||
|
error_code = err.response.status_code
|
||||||
|
raise BedrockError(status_code=error_code, message=response.text)
|
||||||
|
|
||||||
|
return response
|
||||||
|
|
||||||
def embedding(self, *args, **kwargs):
|
def embedding(self, *args, **kwargs):
|
||||||
return super().embedding(*args, **kwargs)
|
return super().embedding(*args, **kwargs)
|
||||||
|
|
|
@ -58,16 +58,25 @@ class AsyncHTTPHandler:
|
||||||
|
|
||||||
class HTTPHandler:
|
class HTTPHandler:
|
||||||
def __init__(
|
def __init__(
|
||||||
self, timeout: httpx.Timeout = _DEFAULT_TIMEOUT, concurrent_limit=1000
|
self,
|
||||||
|
timeout: Optional[httpx.Timeout] = None,
|
||||||
|
concurrent_limit=1000,
|
||||||
|
client: Optional[httpx.Client] = None,
|
||||||
):
|
):
|
||||||
# Create a client with a connection pool
|
if timeout is None:
|
||||||
self.client = httpx.Client(
|
timeout = _DEFAULT_TIMEOUT
|
||||||
timeout=timeout,
|
|
||||||
limits=httpx.Limits(
|
if client is None:
|
||||||
max_connections=concurrent_limit,
|
# Create a client with a connection pool
|
||||||
max_keepalive_connections=concurrent_limit,
|
self.client = httpx.Client(
|
||||||
),
|
timeout=timeout,
|
||||||
)
|
limits=httpx.Limits(
|
||||||
|
max_connections=concurrent_limit,
|
||||||
|
max_keepalive_connections=concurrent_limit,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.client = client
|
||||||
|
|
||||||
def close(self):
|
def close(self):
|
||||||
# Close the client when you're done with it
|
# Close the client when you're done with it
|
||||||
|
|
|
@ -1922,20 +1922,37 @@ def completion(
|
||||||
elif custom_llm_provider == "bedrock":
|
elif custom_llm_provider == "bedrock":
|
||||||
# boto3 reads keys from .env
|
# boto3 reads keys from .env
|
||||||
custom_prompt_dict = custom_prompt_dict or litellm.custom_prompt_dict
|
custom_prompt_dict = custom_prompt_dict or litellm.custom_prompt_dict
|
||||||
response = bedrock.completion(
|
|
||||||
model=model,
|
if "cohere" in model:
|
||||||
messages=messages,
|
response = bedrock_chat_completion.completion(
|
||||||
custom_prompt_dict=litellm.custom_prompt_dict,
|
model=model,
|
||||||
model_response=model_response,
|
messages=messages,
|
||||||
print_verbose=print_verbose,
|
custom_prompt_dict=litellm.custom_prompt_dict,
|
||||||
optional_params=optional_params,
|
model_response=model_response,
|
||||||
litellm_params=litellm_params,
|
print_verbose=print_verbose,
|
||||||
logger_fn=logger_fn,
|
optional_params=optional_params,
|
||||||
encoding=encoding,
|
litellm_params=litellm_params,
|
||||||
logging_obj=logging,
|
logger_fn=logger_fn,
|
||||||
extra_headers=extra_headers,
|
encoding=encoding,
|
||||||
timeout=timeout,
|
logging_obj=logging,
|
||||||
)
|
extra_headers=extra_headers,
|
||||||
|
timeout=timeout,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
response = bedrock.completion(
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
custom_prompt_dict=litellm.custom_prompt_dict,
|
||||||
|
model_response=model_response,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
optional_params=optional_params,
|
||||||
|
litellm_params=litellm_params,
|
||||||
|
logger_fn=logger_fn,
|
||||||
|
encoding=encoding,
|
||||||
|
logging_obj=logging,
|
||||||
|
extra_headers=extra_headers,
|
||||||
|
timeout=timeout,
|
||||||
|
)
|
||||||
|
|
||||||
if (
|
if (
|
||||||
"stream" in optional_params
|
"stream" in optional_params
|
||||||
|
|
|
@ -2585,6 +2585,7 @@ def test_completion_chat_sagemaker_mistral():
|
||||||
|
|
||||||
|
|
||||||
def test_completion_bedrock_command_r():
|
def test_completion_bedrock_command_r():
|
||||||
|
litellm.set_verbose = True
|
||||||
response = completion(
|
response = completion(
|
||||||
model="bedrock/cohere.command-r-plus-v1:0",
|
model="bedrock/cohere.command-r-plus-v1:0",
|
||||||
messages=[{"role": "user", "content": "Hey! how's it going?"}],
|
messages=[{"role": "user", "content": "Hey! how's it going?"}],
|
||||||
|
|
6
litellm/types/llms/bedrock.py
Normal file
6
litellm/types/llms/bedrock.py
Normal file
|
@ -0,0 +1,6 @@
|
||||||
|
from typing import TypedDict
|
||||||
|
|
||||||
|
|
||||||
|
class Document(TypedDict):
|
||||||
|
title: str
|
||||||
|
snippet: str
|
Loading…
Add table
Add a link
Reference in a new issue