mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 03:34:10 +00:00
feat(bedrock_httpx.py): working cohere command r async calls
This commit is contained in:
parent
926b86af87
commit
5185580e3d
6 changed files with 364 additions and 32 deletions
|
@ -670,6 +670,7 @@ from .llms.sagemaker import SagemakerConfig
|
|||
from .llms.ollama import OllamaConfig
|
||||
from .llms.ollama_chat import OllamaChatConfig
|
||||
from .llms.maritalk import MaritTalkConfig
|
||||
from .llms.bedrock_httpx import AmazonCohereChatConfig
|
||||
from .llms.bedrock import (
|
||||
AmazonTitanConfig,
|
||||
AmazonAI21Config,
|
||||
|
|
|
@ -7,7 +7,7 @@ import json
|
|||
from enum import Enum
|
||||
import requests, copy # type: ignore
|
||||
import time
|
||||
from typing import Callable, Optional, List, Literal, Union
|
||||
from typing import Callable, Optional, List, Literal, Union, Any, TypedDict, Tuple
|
||||
from litellm.utils import (
|
||||
ModelResponse,
|
||||
Usage,
|
||||
|
@ -18,11 +18,110 @@ from litellm.utils import (
|
|||
get_secret,
|
||||
)
|
||||
import litellm
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt, cohere_message_pt
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
||||
from .base import BaseLLM
|
||||
import httpx # type: ignore
|
||||
from .bedrock import BedrockError
|
||||
from .bedrock import BedrockError, convert_messages_to_prompt
|
||||
from litellm.types.llms.bedrock import *
|
||||
|
||||
|
||||
class AmazonCohereChatConfig:
|
||||
"""
|
||||
Reference - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-cohere-command-r-plus.html
|
||||
"""
|
||||
|
||||
documents: Optional[List[Document]] = None
|
||||
search_queries_only: Optional[bool] = None
|
||||
preamble: Optional[str] = None
|
||||
max_tokens: Optional[int] = None
|
||||
temperature: Optional[float] = None
|
||||
p: Optional[float] = None
|
||||
k: Optional[float] = None
|
||||
prompt_truncation: Optional[str] = None
|
||||
frequency_penalty: Optional[float] = None
|
||||
presence_penalty: Optional[float] = None
|
||||
seed: Optional[int] = None
|
||||
return_prompt: Optional[bool] = None
|
||||
stop_sequences: Optional[List[str]] = None
|
||||
raw_prompting: Optional[bool] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
documents: Optional[List[Document]] = None,
|
||||
search_queries_only: Optional[bool] = None,
|
||||
preamble: Optional[str] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
temperature: Optional[float] = None,
|
||||
p: Optional[float] = None,
|
||||
k: Optional[float] = None,
|
||||
prompt_truncation: Optional[str] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
seed: Optional[int] = None,
|
||||
return_prompt: Optional[bool] = None,
|
||||
stop_sequences: Optional[str] = None,
|
||||
raw_prompting: Optional[bool] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params(self) -> List[str]:
|
||||
return [
|
||||
"max_tokens",
|
||||
"stream",
|
||||
"stop",
|
||||
"temperature",
|
||||
"top_p",
|
||||
"frequency_penalty",
|
||||
"presence_penalty",
|
||||
"seed",
|
||||
"stop",
|
||||
]
|
||||
|
||||
def map_openai_params(
|
||||
self, non_default_params: dict, optional_params: dict
|
||||
) -> dict:
|
||||
for param, value in non_default_params.items():
|
||||
if param == "max_tokens":
|
||||
optional_params["max_tokens"] = value
|
||||
if param == "stream":
|
||||
optional_params["stream"] = value
|
||||
if param == "stop":
|
||||
if isinstance(value, str):
|
||||
value = [value]
|
||||
optional_params["stop_sequences"] = value
|
||||
if param == "temperature":
|
||||
optional_params["temperature"] = value
|
||||
if param == "top_p":
|
||||
optional_params["p"] = value
|
||||
if param == "frequency_penalty":
|
||||
optional_params["frequency_penalty"] = value
|
||||
if param == "presence_penalty":
|
||||
optional_params["presence_penalty"] = value
|
||||
if "seed":
|
||||
optional_params["seed"] = value
|
||||
return optional_params
|
||||
|
||||
|
||||
class BedrockLLM(BaseLLM):
|
||||
|
@ -47,6 +146,48 @@ class BedrockLLM(BaseLLM):
|
|||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def convert_messages_to_prompt(
|
||||
self, model, messages, provider, custom_prompt_dict
|
||||
) -> Tuple[str, Optional[list]]:
|
||||
# handle anthropic prompts and amazon titan prompts
|
||||
prompt = ""
|
||||
chat_history: Optional[list] = None
|
||||
if provider == "anthropic" or provider == "amazon":
|
||||
if model in custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[model]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details["roles"],
|
||||
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
||||
final_prompt_value=model_prompt_details["final_prompt_value"],
|
||||
messages=messages,
|
||||
)
|
||||
else:
|
||||
prompt = prompt_factory(
|
||||
model=model, messages=messages, custom_llm_provider="bedrock"
|
||||
)
|
||||
elif provider == "mistral":
|
||||
prompt = prompt_factory(
|
||||
model=model, messages=messages, custom_llm_provider="bedrock"
|
||||
)
|
||||
elif provider == "meta":
|
||||
prompt = prompt_factory(
|
||||
model=model, messages=messages, custom_llm_provider="bedrock"
|
||||
)
|
||||
elif provider == "cohere":
|
||||
prompt, chat_history = cohere_message_pt(messages=messages)
|
||||
else:
|
||||
prompt = ""
|
||||
for message in messages:
|
||||
if "role" in message:
|
||||
if message["role"] == "user":
|
||||
prompt += f"{message['content']}"
|
||||
else:
|
||||
prompt += f"{message['content']}"
|
||||
else:
|
||||
prompt += f"{message['content']}"
|
||||
return prompt, chat_history # type: ignore
|
||||
|
||||
def get_credentials(
|
||||
self,
|
||||
aws_access_key_id: Optional[str] = None,
|
||||
|
@ -114,11 +255,168 @@ class BedrockLLM(BaseLLM):
|
|||
|
||||
return session.get_credentials()
|
||||
|
||||
def completion(self, *args, **kwargs) -> Union[ModelResponse, CustomStreamWrapper]:
|
||||
## get credentials
|
||||
## generate signature
|
||||
## make request
|
||||
return super().completion(*args, **kwargs)
|
||||
def completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list,
|
||||
custom_prompt_dict: dict,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
logging_obj,
|
||||
optional_params: dict,
|
||||
timeout: Optional[Union[float, httpx.Timeout]],
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
extra_headers: Optional[dict] = None,
|
||||
client: Optional[HTTPHandler] = None,
|
||||
) -> Union[ModelResponse, CustomStreamWrapper]:
|
||||
try:
|
||||
import boto3
|
||||
|
||||
from botocore.auth import SigV4Auth
|
||||
from botocore.awsrequest import AWSRequest
|
||||
from botocore.credentials import Credentials
|
||||
except ImportError as e:
|
||||
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
||||
|
||||
## CREDENTIALS ##
|
||||
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
|
||||
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
||||
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
||||
aws_region_name = optional_params.pop("aws_region_name", None)
|
||||
aws_role_name = optional_params.pop("aws_role_name", None)
|
||||
aws_session_name = optional_params.pop("aws_session_name", None)
|
||||
aws_profile_name = optional_params.pop("aws_profile_name", None)
|
||||
aws_bedrock_runtime_endpoint = optional_params.pop(
|
||||
"aws_bedrock_runtime_endpoint", None
|
||||
) # https://bedrock-runtime.{region_name}.amazonaws.com
|
||||
|
||||
### SET REGION NAME ###
|
||||
if aws_region_name is None:
|
||||
# check env #
|
||||
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
|
||||
|
||||
if litellm_aws_region_name is not None and isinstance(
|
||||
litellm_aws_region_name, str
|
||||
):
|
||||
aws_region_name = litellm_aws_region_name
|
||||
|
||||
standard_aws_region_name = get_secret("AWS_REGION", None)
|
||||
if standard_aws_region_name is not None and isinstance(
|
||||
standard_aws_region_name, str
|
||||
):
|
||||
aws_region_name = standard_aws_region_name
|
||||
|
||||
if aws_region_name is None:
|
||||
aws_region_name = "us-west-2"
|
||||
|
||||
credentials: Credentials = self.get_credentials(
|
||||
aws_access_key_id=aws_access_key_id,
|
||||
aws_secret_access_key=aws_secret_access_key,
|
||||
aws_region_name=aws_region_name,
|
||||
aws_session_name=aws_session_name,
|
||||
aws_profile_name=aws_profile_name,
|
||||
aws_role_name=aws_role_name,
|
||||
)
|
||||
|
||||
### SET RUNTIME ENDPOINT ###
|
||||
endpoint_url = ""
|
||||
env_aws_bedrock_runtime_endpoint = get_secret("AWS_BEDROCK_RUNTIME_ENDPOINT")
|
||||
if aws_bedrock_runtime_endpoint is not None and isinstance(
|
||||
aws_bedrock_runtime_endpoint, str
|
||||
):
|
||||
endpoint_url = aws_bedrock_runtime_endpoint
|
||||
elif env_aws_bedrock_runtime_endpoint and isinstance(
|
||||
env_aws_bedrock_runtime_endpoint, str
|
||||
):
|
||||
endpoint_url = env_aws_bedrock_runtime_endpoint
|
||||
else:
|
||||
endpoint_url = f"https://bedrock-runtime.{aws_region_name}.amazonaws.com"
|
||||
|
||||
endpoint_url = f"{endpoint_url}/model/{model}/invoke"
|
||||
|
||||
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)
|
||||
|
||||
provider = model.split(".")[0]
|
||||
prompt, chat_history = self.convert_messages_to_prompt(
|
||||
model, messages, provider, custom_prompt_dict
|
||||
)
|
||||
inference_params = copy.deepcopy(optional_params)
|
||||
stream = inference_params.pop("stream", False)
|
||||
|
||||
if provider == "cohere":
|
||||
if model.startswith("cohere.command-r"):
|
||||
## LOAD CONFIG
|
||||
config = litellm.AmazonCohereChatConfig().get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in inference_params
|
||||
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
inference_params[k] = v
|
||||
if optional_params.get("stream", False) == True:
|
||||
inference_params["stream"] = (
|
||||
True # cohere requires stream = True in inference params
|
||||
)
|
||||
|
||||
_data = {"message": prompt, **inference_params}
|
||||
if chat_history is not None:
|
||||
_data["chat_history"] = chat_history
|
||||
data = json.dumps(_data)
|
||||
else:
|
||||
## LOAD CONFIG
|
||||
config = litellm.AmazonCohereConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in inference_params
|
||||
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
inference_params[k] = v
|
||||
if optional_params.get("stream", False) == True:
|
||||
inference_params["stream"] = (
|
||||
True # cohere requires stream = True in inference params
|
||||
)
|
||||
data = json.dumps({"prompt": prompt, **inference_params})
|
||||
else:
|
||||
raise Exception("UNSUPPORTED PROVIDER")
|
||||
|
||||
## COMPLETION CALL
|
||||
headers = {"Content-Type": "application/json"}
|
||||
request = AWSRequest(
|
||||
method="POST", url=endpoint_url, data=data, headers=headers
|
||||
)
|
||||
sigv4.add_auth(request)
|
||||
prepped = request.prepare()
|
||||
|
||||
if client is None:
|
||||
_params = {}
|
||||
if timeout is not None:
|
||||
if isinstance(timeout, float) or isinstance(timeout, int):
|
||||
timeout = httpx.Timeout(timeout)
|
||||
_params["timeout"] = timeout
|
||||
self.client = HTTPHandler(**_params) # type: ignore
|
||||
else:
|
||||
self.client = client
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=messages,
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"api_base": prepped.url,
|
||||
"headers": prepped.headers,
|
||||
},
|
||||
)
|
||||
|
||||
response = self.client.post(url=prepped.url, headers=prepped.headers, data=data) # type: ignore
|
||||
|
||||
try:
|
||||
response.raise_for_status()
|
||||
except httpx.HTTPStatusError as err:
|
||||
error_code = err.response.status_code
|
||||
raise BedrockError(status_code=error_code, message=response.text)
|
||||
|
||||
return response
|
||||
|
||||
def embedding(self, *args, **kwargs):
|
||||
return super().embedding(*args, **kwargs)
|
||||
|
|
|
@ -58,16 +58,25 @@ class AsyncHTTPHandler:
|
|||
|
||||
class HTTPHandler:
|
||||
def __init__(
|
||||
self, timeout: httpx.Timeout = _DEFAULT_TIMEOUT, concurrent_limit=1000
|
||||
self,
|
||||
timeout: Optional[httpx.Timeout] = None,
|
||||
concurrent_limit=1000,
|
||||
client: Optional[httpx.Client] = None,
|
||||
):
|
||||
# Create a client with a connection pool
|
||||
self.client = httpx.Client(
|
||||
timeout=timeout,
|
||||
limits=httpx.Limits(
|
||||
max_connections=concurrent_limit,
|
||||
max_keepalive_connections=concurrent_limit,
|
||||
),
|
||||
)
|
||||
if timeout is None:
|
||||
timeout = _DEFAULT_TIMEOUT
|
||||
|
||||
if client is None:
|
||||
# Create a client with a connection pool
|
||||
self.client = httpx.Client(
|
||||
timeout=timeout,
|
||||
limits=httpx.Limits(
|
||||
max_connections=concurrent_limit,
|
||||
max_keepalive_connections=concurrent_limit,
|
||||
),
|
||||
)
|
||||
else:
|
||||
self.client = client
|
||||
|
||||
def close(self):
|
||||
# Close the client when you're done with it
|
||||
|
|
|
@ -1922,20 +1922,37 @@ def completion(
|
|||
elif custom_llm_provider == "bedrock":
|
||||
# boto3 reads keys from .env
|
||||
custom_prompt_dict = custom_prompt_dict or litellm.custom_prompt_dict
|
||||
response = bedrock.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
custom_prompt_dict=litellm.custom_prompt_dict,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
encoding=encoding,
|
||||
logging_obj=logging,
|
||||
extra_headers=extra_headers,
|
||||
timeout=timeout,
|
||||
)
|
||||
|
||||
if "cohere" in model:
|
||||
response = bedrock_chat_completion.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
custom_prompt_dict=litellm.custom_prompt_dict,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
encoding=encoding,
|
||||
logging_obj=logging,
|
||||
extra_headers=extra_headers,
|
||||
timeout=timeout,
|
||||
)
|
||||
else:
|
||||
response = bedrock.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
custom_prompt_dict=litellm.custom_prompt_dict,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
encoding=encoding,
|
||||
logging_obj=logging,
|
||||
extra_headers=extra_headers,
|
||||
timeout=timeout,
|
||||
)
|
||||
|
||||
if (
|
||||
"stream" in optional_params
|
||||
|
|
|
@ -2585,6 +2585,7 @@ def test_completion_chat_sagemaker_mistral():
|
|||
|
||||
|
||||
def test_completion_bedrock_command_r():
|
||||
litellm.set_verbose = True
|
||||
response = completion(
|
||||
model="bedrock/cohere.command-r-plus-v1:0",
|
||||
messages=[{"role": "user", "content": "Hey! how's it going?"}],
|
||||
|
|
6
litellm/types/llms/bedrock.py
Normal file
6
litellm/types/llms/bedrock.py
Normal file
|
@ -0,0 +1,6 @@
|
|||
from typing import TypedDict
|
||||
|
||||
|
||||
class Document(TypedDict):
|
||||
title: str
|
||||
snippet: str
|
Loading…
Add table
Add a link
Reference in a new issue