mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
fix(proxy_server): improve error handling
This commit is contained in:
parent
d5c33657d2
commit
541a8b7bc8
5 changed files with 166 additions and 55 deletions
Binary file not shown.
Binary file not shown.
141
litellm/proxy/llm.py
Normal file
141
litellm/proxy/llm.py
Normal file
|
@ -0,0 +1,141 @@
|
|||
from typing import Dict, Optional
|
||||
from collections import defaultdict
|
||||
import threading
|
||||
import os, subprocess, traceback, json
|
||||
from fastapi import HTTPException
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
import backoff
|
||||
import openai.error
|
||||
|
||||
import litellm
|
||||
import litellm.exceptions
|
||||
|
||||
cost_dict: Dict[str, Dict[str, float]] = defaultdict(dict)
|
||||
cost_dict_lock = threading.Lock()
|
||||
|
||||
debug = False
|
||||
##### HELPER FUNCTIONS #####
|
||||
def print_verbose(print_statement):
|
||||
global debug
|
||||
if debug:
|
||||
print(print_statement)
|
||||
|
||||
# for streaming
|
||||
def data_generator(response):
|
||||
print_verbose("inside generator")
|
||||
for chunk in response:
|
||||
print_verbose(f"returned chunk: {chunk}")
|
||||
yield f"data: {json.dumps(chunk)}\n\n"
|
||||
|
||||
def run_ollama_serve():
|
||||
command = ['ollama', 'serve']
|
||||
|
||||
with open(os.devnull, 'w') as devnull:
|
||||
process = subprocess.Popen(command, stdout=devnull, stderr=devnull)
|
||||
|
||||
##### ERROR HANDLING #####
|
||||
class RetryConstantError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class RetryExpoError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class UnknownLLMError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
def handle_llm_exception(e: Exception, user_api_base: Optional[str]=None):
|
||||
print(f"\033[1;31mLiteLLM.Exception: {str(e)}\033[0m")
|
||||
if isinstance(e, openai.error.ServiceUnavailableError) and e.llm_provider == "ollama":
|
||||
run_ollama_serve()
|
||||
if isinstance(e, openai.error.InvalidRequestError) and e.llm_provider == "ollama":
|
||||
completion_call_details = {}
|
||||
completion_call_details["model"] = e.model
|
||||
if user_api_base:
|
||||
completion_call_details["api_base"] = user_api_base
|
||||
else:
|
||||
completion_call_details["api_base"] = None
|
||||
print(f"\033[1;31mLiteLLM.Exception: Invalid API Call. Call details: Model: \033[1;37m{e.model}\033[1;31m; LLM Provider: \033[1;37m{e.llm_provider}\033[1;31m; Custom API Base - \033[1;37m{completion_call_details['api_base']}\033[1;31m\033[0m")
|
||||
if completion_call_details["api_base"] == "http://localhost:11434":
|
||||
print()
|
||||
print("Trying to call ollama? Try `litellm --model ollama/llama2 --api_base http://localhost:11434`")
|
||||
print()
|
||||
if isinstance(
|
||||
e,
|
||||
(
|
||||
openai.error.APIError,
|
||||
openai.error.TryAgain,
|
||||
openai.error.Timeout,
|
||||
openai.error.ServiceUnavailableError,
|
||||
),
|
||||
):
|
||||
raise RetryConstantError from e
|
||||
elif isinstance(e, openai.error.RateLimitError):
|
||||
raise RetryExpoError from e
|
||||
elif isinstance(
|
||||
e,
|
||||
(
|
||||
openai.error.APIConnectionError,
|
||||
openai.error.InvalidRequestError,
|
||||
openai.error.AuthenticationError,
|
||||
openai.error.PermissionError,
|
||||
openai.error.InvalidAPIType,
|
||||
openai.error.SignatureVerificationError,
|
||||
),
|
||||
):
|
||||
raise e
|
||||
else:
|
||||
raise UnknownLLMError from e
|
||||
|
||||
|
||||
@backoff.on_exception(
|
||||
wait_gen=backoff.constant,
|
||||
exception=RetryConstantError,
|
||||
max_tries=3,
|
||||
interval=3,
|
||||
)
|
||||
@backoff.on_exception(
|
||||
wait_gen=backoff.expo,
|
||||
exception=RetryExpoError,
|
||||
jitter=backoff.full_jitter,
|
||||
max_value=100,
|
||||
factor=1.5,
|
||||
)
|
||||
|
||||
def litellm_completion(data: Dict,
|
||||
type: str,
|
||||
user_model: Optional[str],
|
||||
user_temperature: Optional[str],
|
||||
user_max_tokens: Optional[int],
|
||||
user_api_base: Optional[str],
|
||||
user_headers: Optional[dict],
|
||||
user_debug: bool) -> litellm.ModelResponse:
|
||||
try:
|
||||
global debug
|
||||
debug = user_debug
|
||||
if user_model:
|
||||
data["model"] = user_model
|
||||
# override with user settings
|
||||
if user_temperature:
|
||||
data["temperature"] = user_temperature
|
||||
if user_max_tokens:
|
||||
data["max_tokens"] = user_max_tokens
|
||||
if user_api_base:
|
||||
data["api_base"] = user_api_base
|
||||
if user_headers:
|
||||
data["headers"] = user_headers
|
||||
if type == "completion":
|
||||
response = litellm.text_completion(**data)
|
||||
elif type == "chat_completion":
|
||||
response = litellm.completion(**data)
|
||||
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
|
||||
return StreamingResponse(data_generator(response), media_type='text/event-stream')
|
||||
print_verbose(f"response: {response}")
|
||||
return response
|
||||
except Exception as e:
|
||||
print(e)
|
||||
handle_llm_exception(e=e, user_api_base=user_api_base)
|
||||
return {"message": "An error occurred"}, 500
|
|
@ -23,6 +23,10 @@ except ImportError:
|
|||
import appdirs
|
||||
import tomli_w
|
||||
|
||||
try:
|
||||
from .llm import litellm_completion
|
||||
except ImportError as e:
|
||||
from llm import litellm_completion
|
||||
|
||||
import random
|
||||
list_of_messages = [
|
||||
|
@ -305,14 +309,6 @@ def deploy_proxy(model, api_base, debug, temperature, max_tokens, telemetry, dep
|
|||
|
||||
return url
|
||||
|
||||
|
||||
# for streaming
|
||||
def data_generator(response):
|
||||
print_verbose("inside generator")
|
||||
for chunk in response:
|
||||
print_verbose(f"returned chunk: {chunk}")
|
||||
yield f"data: {json.dumps(chunk)}\n\n"
|
||||
|
||||
def track_cost_callback(
|
||||
kwargs, # kwargs to completion
|
||||
completion_response, # response from completion
|
||||
|
@ -433,49 +429,6 @@ litellm.input_callback = [logger]
|
|||
litellm.success_callback = [logger]
|
||||
litellm.failure_callback = [logger]
|
||||
|
||||
def litellm_completion(data, type):
|
||||
try:
|
||||
if user_model:
|
||||
data["model"] = user_model
|
||||
# override with user settings
|
||||
if user_temperature:
|
||||
data["temperature"] = user_temperature
|
||||
if user_max_tokens:
|
||||
data["max_tokens"] = user_max_tokens
|
||||
if user_api_base:
|
||||
data["api_base"] = user_api_base
|
||||
if user_headers:
|
||||
data["headers"] = user_headers
|
||||
if type == "completion":
|
||||
response = litellm.text_completion(**data)
|
||||
elif type == "chat_completion":
|
||||
response = litellm.completion(**data)
|
||||
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
|
||||
return StreamingResponse(data_generator(response), media_type='text/event-stream')
|
||||
print_verbose(f"response: {response}")
|
||||
return response
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
if "Invalid response object from API" in str(e):
|
||||
completion_call_details = {}
|
||||
if user_model:
|
||||
completion_call_details["model"] = user_model
|
||||
else:
|
||||
completion_call_details["model"] = data['model']
|
||||
|
||||
if user_api_base:
|
||||
completion_call_details["api_base"] = user_api_base
|
||||
else:
|
||||
completion_call_details["api_base"] = None
|
||||
print(f"\033[1;31mLiteLLM.Exception: Invalid API Call. Call details: Model: \033[1;37m{completion_call_details['model']}\033[1;31m; LLM Provider: \033[1;37m{e.llm_provider}\033[1;31m; Custom API Base - \033[1;37m{completion_call_details['api_base']}\033[1;31m\033[0m")
|
||||
if completion_call_details["api_base"] == "http://localhost:11434":
|
||||
print()
|
||||
print("Trying to call ollama? Try `litellm --model ollama/llama2 --api_base http://localhost:11434`")
|
||||
print()
|
||||
else:
|
||||
print(f"\033[1;31mLiteLLM.Exception: {str(e)}\033[0m")
|
||||
return {"message": "An error occurred"}, 500
|
||||
|
||||
#### API ENDPOINTS ####
|
||||
@router.get("/models") # if project requires model list
|
||||
def model_list():
|
||||
|
@ -494,12 +447,12 @@ def model_list():
|
|||
@router.post("/completions")
|
||||
async def completion(request: Request):
|
||||
data = await request.json()
|
||||
return litellm_completion(data=data, type="completion")
|
||||
return litellm_completion(data=data, type="completion", user_model=user_model, user_temperature=user_temperature, user_max_tokens=user_max_tokens, user_api_base=user_api_base, user_headers=user_headers, user_debug=user_debug)
|
||||
|
||||
@router.post("/chat/completions")
|
||||
async def chat_completion(request: Request):
|
||||
data = await request.json()
|
||||
response = litellm_completion(data, type="chat_completion")
|
||||
response = litellm_completion(data, type="chat_completion", user_model=user_model, user_temperature=user_temperature, user_max_tokens=user_max_tokens, user_api_base=user_api_base, user_headers=user_headers, user_debug=user_debug)
|
||||
return response
|
||||
|
||||
|
||||
|
|
|
@ -3092,14 +3092,31 @@ def exception_type(
|
|||
raise original_exception
|
||||
raise original_exception
|
||||
elif custom_llm_provider == "ollama":
|
||||
error_str = original_exception.get("error", "")
|
||||
if isinstance(original_exception, dict):
|
||||
error_str = original_exception.get("error", "")
|
||||
else:
|
||||
error_str = str(original_exception)
|
||||
if "no such file or directory" in error_str:
|
||||
exception_mapping_worked = True
|
||||
raise InvalidRequestError(
|
||||
message=f"Ollama Exception Invalid Model/Model not loaded - {original_exception}",
|
||||
message=f"OllamaException: Invalid Model/Model not loaded - {original_exception}",
|
||||
model=model,
|
||||
llm_provider="ollama"
|
||||
)
|
||||
elif "Failed to establish a new connection" in error_str:
|
||||
exception_mapping_worked = True
|
||||
raise ServiceUnavailableError(
|
||||
message=f"OllamaException: {original_exception}",
|
||||
llm_provider="ollama",
|
||||
model=model
|
||||
)
|
||||
elif "Invalid response object from API" in error_str:
|
||||
exception_mapping_worked = True
|
||||
raise InvalidRequestError(
|
||||
message=f"OllamaException: {original_exception}",
|
||||
llm_provider="ollama",
|
||||
model=model
|
||||
)
|
||||
elif custom_llm_provider == "vllm":
|
||||
if hasattr(original_exception, "status_code"):
|
||||
if original_exception.status_code == 0:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue